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Summary. Several discrete particle methods are reviewed. The reviewed 
methods include: dissipative particle dynamics (DPD), smoothed particle 
hydrodynamics (SPH), element-free Galerkin and mesoscopic bridging scale 
(MBS) methods.  The multiscale (MBS) method coupling the (DPD) and the 
finite element (FE) method for fluids is described, with potential future 
implementations. Few characteristic examples illustrate the main issues which 
are the subject of this presentation. A discussion about advantages and 
shortcomings of discrete particle methods when compared to continuum-based 
methods – first of all the finite element method(FEM), is presented. 

Keywords: Dissipative particle dynamics method, smoothed particle 
hydrodynamics, element-free Galerkin method, multiscale mesoscopic bridging 
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1 INTRODUCTION 

Traditionally, continuum based methods, such as the finite element method or 
boundary element method, are mostly used in engineering, science and medicine. Their 
development started in the 60’s of the last century. The continuous advances in the 
concepts, theoretical enhancements and software developments, and broadening of 
applications, has lead to the today’s stage where these methods are used as everyday 
tools for modeling problems which span from simple linear analyses to multi-physics 
(see, e.g.  [1] – [9]). 
 

However, another group of computational methods have been emerged in last 
two decades. These new computational methods fall into a group of discrete particle 
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methods. They are developed to solve physical problems where the continuum-based 
methods are inappropriate, or even not applicable. For example, modeling of colloidal 
fluids, where a detailed analysis is required, as in case of blood flow within small 
blood vessels, can hardly be modeled by the FE method; or, fracture propagation in a 
general 3D conditions, etc. One type of these discrete particle methods relies on the 
approach used in molecular dynamics (MD) and we here give a brief description of the 
dissipative particle dynamics (DPD) method as one of the attractive  and well 
developed methods in recent years. Another type employs the concept of discretization 
of physical fields in a way analogous to the FE methods (using the continuum 
mechanics quantities as stresses and strains), but offers advantages such as no mesh 
dependence or need for remeshing during the solution process.  We here give a 
description of the two of these methods: smoothed particle hydrodynamics (SPH) and 
element-free Galerkin (EFG) methods. 

Finally, multiscale modeling ( i.e. computational models which couple the 
events on different space and time scales) has become the field of intensive research in 
last years. The multiscale methods originate from the procedures for coupling 
molecular dynamics and continuum mechanics representations. Along this line we here 
present an extension of these procedures to couple the mesoscopic DPD models and 
the FE models for fluids. As will be shown below, this approach can be particularly 
attractive for the analysis of flow of colloidal fluids where the Navier-Stokes equations 
may be appropriate for large domains, while a detailed DPD model is desirable in a 
small regions (e.g. blood flow in large arteries and thrombus development at the vessel 
wall). 

The presentation is organized as follows. We give a brief description of the 
DPD method, mesocopic bridging scale (MBS) method for fluids, SPH and EFG 
methods. Then, few typical example solutions are presented, followed by concluding 
remarks in the last section. 

2 DISSIPATIVE PARTICLE DYNAMICS (DPD) METHOD 

2.1. Introduction to mesoscale modeling. 
 

Molecular dynamics (MD) has been used in modeling of various processes 
and phenomena, particularly in chemistry, biology and medical research. However, the 
MD models have serious limitations since they require enormous number of equations, 
which are measured by billions, for even very small space domains (measured in 
microns) and time period. For example, in modeling of a small protein in water, half a 
million sets of Cartesian coordinates are generated in a nanosecond time period for the 
positions of 10,000 atoms [10], which is still beyond the practical capabilities of 
computer hardware and software currently available. 
 

In order to overcome the limitations of the MD,  the so-called coarse-graining 
approach has been adopted, i.e. discretization of continuum (fluids and solids) into 
mesoscale particles of micron length scale and micro-seconds time scale, considering 
these particles as clusters of atoms. This change of scales can be seen in Fig. 1 where  
the length and time scale domains are shown, starting from the quantum mechanics 
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scale to the macroscale. The mesoscale is typically in the range 10 - 1000 nm and 1 ns 
- 10 ms. 

 

 
 
Figure 1.  Models of biofluids and biosolids  on various temporal and spatial scale 
domains [11]. 
 
 

The discretization into mesoscale particles  is based on the Voronoi cell 
division (tessellation) of a continuum (e.g. [12], [13]), see Fig. 2. As in case of MD, 
the Lagrangian description of motion is employed, with appropriate quantification of 
interaction forces. One of the most developed mesoscale discrete particle methods is 
the dissipative particle dynamics (DPD) method, originating from work of 
Hoogerbrugge and Koelman [14].  The DPD method is particularly suitable for 
modeling  polymeric and other complex fluid systems. We further summarize the basic 
equations of the DPD. 
 

 
 
Figure 2. Discretization of space into Voronoi cells and representation of cells by 
mesoscopic discrete particles. The interaction forces between particles ‘i’ and ‘j’ are 

ij ji= −f f  
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2.2 Basic DPD equations 
 

The basic equations rely on the Lagrangian description of motion. Hence, the 
evolution of the particle position, ri, can be obtained by application of the Newton 
second law: 
 ii vr =&  

 1 ˆ
N N

i ij ij
j i j iim ≠ ≠

= =∑ ∑v f f&           (2.1) 

where iv  is the particle velocity, im  is the particle mass; îjf  is the force acting on 
particle i due to particle j, while ijf  is this force per unit mass (see Fig. 2); and the dot 
indicates a time derivative. The volumetric forces are neglected. 
The interaction forces can be represented as the sum of three forces [15]:  conservative 
(repulsion) C

ijf , dissipative D
ijf , and random force R

ijf : 

 C D R
ij ij ij ij= + +f f f f          (2.2) 

These forces can expressed as: 
 0 0 0(1 / ) , ( ) ,C D D R R R

ij ij ij c ij ij ij ij ij ij ij ija r r w a wγ ξ= − = − ⋅ =f r f v e r f r       (2.3) 
Here, aij is the maximum repulsion force per unit mass, rij is the distance 

between particles i and j, 0 /ij ij ijr=r r  is the unit vector pointing in direction from j to i, 

γ stands for the friction coefficient, and Ra  is the amplitude of the random force. Also,  
Dw  and Rw  are weight functions for dissipative and random forces, dependent on the 

distance from the particle i; and ξij is a random number with zero mean and unit 
variance. The domain of influence of the interaction forces is rc., hence ij =f 0  for 
rij>rc. 

The DPD fluid system should possess a Gibbs–Boltzmann equilibrium state, 
hence the following relation between the weight functions of the dissipative and 
random forces, wD and wR, must hold [15]. 
 2

D Rw w=          (2.4) 
Also the amplitude of the random force Ra  is related to the absolute 

temperature T, 
 ( )1/ 22D

Ba k Tγ=           (2.5) 

where Bk  is the Boltzmann constant. The weight functions can be expressed in the 
form [16] 
 2(1 / )D ij cw r r= − ,   1 /R ij cw r r= −          (2.6) 

Implementation of boundary conditions in  DPD is not simple and 
straightforward. There are several approaches for imposing boundary conditions. For 
example, to impose a planar shear conditions, according to  so-called  Lees-Edwards 
method, it is assumed that the upper wall in a periodic box is moving with velocity 
Vx/2 and lower wall with-Vx/2. A particle crossing the upper boundary of the box at 
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time t is re-introduced through the lower boundary with its x-coordinate shifted by -Vxt  
and the x-velocity decreased by Vx. For a particle crossing the lower boundary of the 
box, the x-coordinate shift is Vxt and the x-velocity is increased by Vx. Other 
approaches can be found in literature, e.g. [17]-[20]. 

In integrating differential equations of motion (2.1) with a time step t∆ , the 
resulting interaction force if  is expressed as: 

( )( )1/ 2C D R
i ij ij ij

j i

t −

≠

= + + ∆∑f f f f          (2.7) 

The coefficient ( ) 1/ 2t −∆  multiplying the random force comes from the 
integration of the stochastic equations of motion (for physical interpretation of this 
coefficient see [15],[16]). Various approaches has been used for the solution 
propagation over time, among which the so-called  velocity-Verlet algorithm [16] 
gives the most accurate results. 
 
3   MULTISCALE MODELING, COUPLING DPD-FE FOR FLUID FLOW 
 

We here present a methodology of coupling the two scales for fluid flow, 
mesoscopic and macroscale, modeled by discrete particle DPD method (Section 2) and 
continuum-based FE method. This approach is called the mesoscopic bridging scale  
(MBS) method [21],[22]. The basic equations are given, with application on a simple 
example. 
 
3.1 Introduction to multiscale modeling 
 

A possibility to overcome limitations of the MD models is to use a multiscale 
approach which appropriately couples the MD and continuum methods. A review of 
the multiscale methods is given [23]-[26]. An extension of this multiscale approach to 
further couple the mesoscale and macroscale modeling is presented in this section. It 
relies on the bridging scale (BS) method (W. K. Liu and co-workers, see e.g. [27], 
[28]) of coupling MD and FE models. 

The main idea of the MBS method is that the fluid velocity is decomposed 
into the coarse scale mean velocity and fine scale velocity fluctuation of a mesoscopic 
particle. The mean velocity can be calculated by a continuum-based method, such as 
the FE method, and the fine scale correction velocity is determined by a mesoscopic 
discrete particle method (e.g. DPD). Use of the appropriate projection operator 
provides the orthogonality of the fine scale velocities and coarse scale (FE) 
interpolation functions. The most significant result is that this orthogonality allows the 
total kinetic energy of the material system to be represented as a sum of the coarse and 
fine scale kinetic energies, uncoupled with respect to the velocities in the two scales. 
Finally, this form of the kinetic energy leads to the two systems of differential 
equations of motion coupled in the force terms only. 

The MBS approach is particularly attractive for modeling a dilute mixture 
flow with a detailed insight into flow in certain local regions, as in case of, for 
example, blood flow in a large artery with growing thrombus at the wall caused by 
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adhesion of platelets. Development of the thrombus is dependent on both the global 
hemodynamics within the artery, and local flow and interactions between blood 
constituents within a small region around the thrombus. Continuum methods are 
applicable for modeling global artery hemodynamics, but are inadequate for 
determination of local flows which involve platelet activation, aggregation and 
adhesion. 
 
3.2. Basic equations and boundary condition 
 

A fluid domain is discretized into the mesoscale discrete particles, further 
called ‘particles’, representing the fine scale model; and into finite elements as the 
coarse scale model. One finite element is shown in Fig. 3.  The basic assumption is 
that the velocity of a particle ‘i’, iv , at any time, can be expressed by: 
 

i i i′= +v v v                   (3.1) 
where iv  is the coarse scale velocity, representing the mean particle velocity, obtained 
by the FE method; and i′v  is the velocity correction, or fine scale velocity fluctuation, 
obtained from the fine scale solution.  According to the FE method, the coarse scale 
velocity iv  can be expressed in terms of nodal velocities, V, as: 
 

i i=v Ν V        (3.2) 
where ( ), ,i i i

i r s tΝ  is the matrix of interpolation functions for velocities within the 

finite element, with the natural coordinates of particle  ‘i’; and V is the nodal velocity 
vector. The relations (3.1) and (3.2) can be written for all particles within the finite 
elemenl, 
 ′= +v v v        (3.3) 
 =v ΝV         (3.4) 

 
 

Figure 3  Discretization of fluid within a finite element into mesoscopic discrete 
particles; velocities and interaction forces (2D representation). 
 

We now use a projection operator (a matrix) Q  to express the velocity vector 
′v  in terms of the nodal velocity V, as: 

 ′ =v Qv            (3.5) 
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The projection operator is obtained by the minimization of  a properly defined 

residual, so that the kinetic energy of a finite element, Ek, can be expressed as the sum 
of two terms, kinetic energy of the coarse (macroscale), kE , and kinetic energy of the 
velocity corrections from the fine scale (mesoscale), kE′ , 
 k k kE E E′= +            (3.6) 
where 

 1 1 1
2 2 2

T T T
k AE = = =v M v V MV V MV         (3.7) 

and 

 1
2

T
k AE ′ ′ ′= v M v            (3.8) 

Note that the terms kE  and E′  are decoupled with respect to the velocities of 
the two scales. This decomposition of kinetic energy is the result of the fundamental 
importance for the MBS method for fluids. 

From the principle of virtual power  follow the differential equations of 
motion of fluid within one finite element. This mechanical system possesses 3na + 3N 
degrees of freedom, where na is the number of particles and N is the number of FE 
nodes (3D finite element), corresponding to particle fluctuation velocities ′v  and FE 
nodal velocities V, respectively. The system is subjected to external and internal 
forces. The differential equations are: 
 intext

A ′ ′ ′= +M v f f&           (3.9) 
where ext′f and int′f  are the external force (such as gravity, or inertial forces due to 
motion of the reference coordinate system) and internal force - from action of 
surrounding particles, respectively; and 
 intext= +MV F F&          (3.10) 
where the vectors extF  and intF  are the external and internal forces corresponding to 
the FE nodal velocity vector V. The forces ext′f and int′f  can be further expressed in 
terms of the forces extf  and intf  acting on particles [9]  as: 
 ( )int intext T ext′ ′+ = +f f Q f f         (3.11) 

The system of equations (3.9) and (3.10) look fully uncoupled and 
independent. However, the internal finite element forces intF  are evaluated using the 
stresses within the fluid. The stresses, on the other hand, can be calculated from the 
interaction forces among particles, using the Irving-Kirkwood model [29], [30] 

 1ˆ ˆ
2i i i ij ij

i i j i

n m
≠

⊗ ⊗
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦
∑ ∑∑σ v v r f       (3.12) 

where n is the number density of particles; im   is the particle mass; the vector ˆ iv  is 
defined as ( )ˆ i i= −v v v x ; ( )v x  is the stream velocity at the position x; ij i j= −r r r ; 

and ... denotes the ensemble average. Therefore, the following functional 
relationship can be written: 
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 ( )int int int=F F f                      (3.13) 
This leads to the result that the differential equations of motion (3.9) and (3.10) are 
coupled through the force terms. 

Instead to evaluate the forces   ext′f and int′f  and then calculate the fluctuation 
velocities ′v  from (3.9), it is more efficient to determine the forces extf  and intf , use 
them to find the stresses within the fluid from (3.12), and then determine the nodal 
forces of the finite element needed in (3.10). 

In order to couple the finite element balance equations and the mesoscale 
model, we write  the finite element incremental-iterative equation for balance of linear 
momentum as: 

      
( 1)

( 1)

1 ( 1) ( )

( )

1 ( 1) 11 int( 1) 1 ( 1)

1

1

1 1ˆ

0 0 0 0

i

i

n i i
vp

i
T
vp

n i n nn i n i
vpext

nT
vp

t

t t
−

−

+ −

+ − ++ − + −

+

⎡ ⎤+ ⎧ ⎫∆⎢ ⎥ =∆ ⎨ ⎬⎢ ⎥ ∆⎩ ⎭⎢ ⎥⎣ ⎦
⎡ ⎤ ⎧ ⎫⎧ ⎫+⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪⎢ ⎥+ − +∆ ∆⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎢ ⎥ ⎩ ⎭⎣ ⎦

M K K V
PK 0

M K K V M VF F

PK

%

(3.14) 

where V  and  P are the nodal vectors of velocity and pressure; the matrices are 
defined in a usual manner [9];  extF  is the external force;  the upper left  indices ‘n’ and 
‘n+1’ denote the start and end of time step, and the right upper indices  ‘i-1’ and ‘i’ are 
used for counting equilibrium iterations.  The internal nodal force vector is: 
 1 int( 1) 1 ( 1)

,
n i n i

Ki K j ij
V

F N dVτ+ − + −= −∫      (3.15) 

where 1 ( 1)n i
ijτ

+ −  are the viscous stresses at end of time step, evaluated from the 
interaction DPD forces. 

 
Figure 4 Two domains within a flow field: local domain - modeled by both DPD and 
FE methods; global domain modeled by FE method only.  Boundary conditions at the 
common boundary  between the local and global domains (velocities of particles are 
equal to those calculated using the FE model). 
    Finally, in order to achieve the main goals of this multiscale coupling 
specified in Section 3.1, we divide the entire fluid domain into the local domain (one 
or more), where the both mesoscopic (DPD) and continuum (FE) models are used, and 
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global domain discretized by continuum (FE) method only. A schematic representation 
of this division is shown in Fig. 4. 

In order to calculate the flow field, it is necessary to satisfy the boundary 
conditions.  External boundary are imposed on the coarse scale, i.e. the velocities or 
the stresses can be prescribed and used in the FE model. However, the boundary 
conditions at the common boundary between the local and global domains must also 
be specified. As shown in Fig. 4, for the DPD model we use the particle velocities at 
the common boundary to be equal to the coarse scale FE velocities. Also, the periodic 
boundary conditions are imposed on the common boundary to keep the number of 
particles constant. Various approaches in implementation of the periodic boundary 
conditions can be found elsewhere (e.g. [17], [19], [20],[31]). 

In one example we illustrate application of the MBS method (other examples 
are given in [22]). 
 
4 SMOOTHED PARTICLE HYDRODYNAMICS (SPH) 
 
4.1 Introduction to the SPH method. 
 

The smoothed particle hydrodynamics (SPH) is the also truly discrete particle 
method as the MD and DPD described in the previous sections. The basic idea in the 
SPH is representation of a physical field within a continuum by values at discrete 
points, considered as discrete material particles, using the so-called kernel 
approximation function. Then the continuum-based partial differential equations of 
balance are transformed into discrete particle equations. These discrete balance 
equations do not require space integration and use of a space mesh. The original 
version of SPH was developed for the modeling compressible fluid flows in 
astrophysical problems [32], [33]. Nowadays, applications of this Lagrangian method 
range from compressible/incompressible fluid flows to the structural mechanics. 

We here present the fundamental equations of the SPH and show example 
solution of a simple flow of incompressible fluid. The main advantage of this method 
is that it does not require any mesh, while the shortcoming is a complexity of 
implementation of boundary conditions. 
 
4.2 The basic equations of the SPH method. 
 

The fundamental concept of the SPH is expressed by the relation 
 ( )( ) ( ) ,

V

f f W h dV′ ′= −∫r r r r       (4.1) 

Here ( )f r  is the kernel approximation of a function at a space point defined by the 

position vector r; ( )' ,W h−r r is called the smoothing kernel function or just kernel 

in SPH literature  [34], [35], while h defines the size of the kernel support domain with 
the spatial volume V; and ′r  is the position vector of a point within the spatial 
domain. The SPH kernels have the ‘compact support’, which means that their value is 
equal to zero outside the support domain around r. 
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 ( ), 0    for   2W h h′ ′− = − ≥r r r r       (4.2) 
The kernel has to be normalized, i.e. it has to satisfy the condition: 
 ( )' , 1

V

W h dV− =∫ r r         (4.3) 

The above requirements ensure that kernel is approaching Dirac's delta function when 
h tends to zero, and the approximation of the function tends to the exact value: 
 ( ) ( )

0
lim ' , '
h

W h δ
→

− = −r r r r    and     
0

lim ( ) ( )
h

f f
→

=r r      (4.4) 

When the function f(r) is only known at a set of the discrete points, the 
integral equation (4.1) becomes the sum, and we have for i=r r : 

 ( )
1

( )
N j

i i i j ij
j

j

mf f f f W
ρ=

≡ ≡ =∑r r        (4.5) 

where ( )( ), ,j j ij i jf f W W h≡ = −r r r . Also, /j j jm Vρ = ∆  is the volume 

associated to particle j, and N is the number of particles within the support domain h. 
The term ‘particle’ in SPH has the same meaning as in the DPD method: the particle 
replaces its surrounding material and mass of the particle is constant during motion. A 
schematics of equation (4.5) is shown in Fig. 5. 

In order to express the balance equations which have the form of partial 
differential equations [9], it is necessary to derive the expression for partial derivatives 
or gradient of a function with respect to space coordinates , 1,2,3.xα α =  Following 
the basic approximation (4.11) we have that: 

 ( ) '
( ) ( ')' ,

V

f fW h dV
x xα α

∂ ∂
= −

∂ ∂∫
r rr r        (4.6) 

and integrating by parts finally follows: 

 
1

Ni j ij
j

j i
j

f m Wf
x xα αρ=

∂ ∂
=

∂ ∂∑         (4.7) 

 Details of this derivation are given in [9]. Although the derivation of this 
expression is done correctly, an empirical relation for the derivatives is recommended 
[36]: 

   1 ( )f f f
x x xα α α

ρρ
ρ
⎡ ⎤∂ ∂ ∂

= −⎢ ⎥∂ ∂ ∂⎣ ⎦
                    (4.8) 
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 Next, we list two kernel functions. The most common is the B-spline function   
[37]: 

   ( )

2 3

3

3 31 1
2 4

1( , ) 2 1 2
4
0 2

D
CW h
h

ν ν ν

ν ν ν

ν

⎧⎛ ⎞− + <⎜ ⎟⎪⎝ ⎠⎪
⎪

= − ≤ ≤⎨
⎪

>⎪
⎪
⎩

;  ' / hν = −r r     (4.9) 

 

 
Figure 5  A schematics of the SPH interpolation. Value of function f at a discrete point 
‘i’ is interpolated from the values of surrounding points within the support domain of 

radius 2h by use of the kernel function W(rij). 
 
 

where D is the number of the dimensions of the problem (1, 2 or 3). The constant C is 
the scaling factor which has to provide that equations (4.2) and (4.3) are satisfied: 
C=2/3, ( )10 / 7C π=  , 1/C π=  for D=1, 2, 3, respectively. The second is a quintic 
spline, which for 2D problems is:  
 

  

( ) ( ) ( )
( ) ( )
( )

5 5 5

5 5

5

3 6 2 15 1 0 1

7 3 6 2 1 2( , )
478 3 2 3

0 3

W h

ν ν ν ν

ν ν νν
π ν ν

ν

⎧ − − − + − ≤ <
⎪
⎪⎪ − − − ≤ <= ⎨
⎪ − ≤ <
⎪

≥⎪⎩

;  ' / hν = −r r        (4.10) 

The usage of quintic kernel approximately doubles the computational time, but gives 
more stable results. 
 Finally, we give the SPH equations of balance of mass (continuity equation) and 
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balance of linear momentum. They are: 
 

   

( ) ( )

1

2 2
1

( )
Ni ij

j i j
i

j

j iNi ij Vj
j ij

i jj ij

d Wm v v
dt x

dv W fm W
dt x

β β
β

αβ αβα α

β

ρ

σ σ

ρρ ρ

=

=

∂
= −

∂

⎡ ⎤⎛ ⎞
∂⎢ ⎥⎜ ⎟= + +⎢ ⎥⎜ ⎟ ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
  sum on :  1,2,3

no sum on i
β β =    (4.11) 

 
Details of derivation of these equations are given in [9]. 

5  ELEMENT-FREE GALERKIN (EFG) METHOD 

5.1 Introduction to the EFG method 

   The so-called element-free Galerkin (EFG) method can be considered as a 
computational procedure which overcomes the shortcomings of the mentioned 
methods. The fundamental idea of the EFG method is to represent the field of a 
physical quantity by values at a set of discrete points which are not associated with a 
mesh as in the FE method, i.e. the points are element-free. These points are usually 
called the free points. The approximate value of a quantity at material point within the 
domain is obtained by use of the weight-type interpolation functions within a domain 
of influence. The weight functions decay with the distance from the material point and 
are negligible outside the domain of influence, as schematically shown in Fig. 6a. 

   Finally, note that the EFG is in essence a continuum method. Discretization of 
the continuum leads to discrete (free) points, but evaluation of the matrices and vectors 
within the discrete balance equations is performed over the continuous subdomain 
 

5.2 Formulation of the EFG method 

   The interpolated value  ( )u r  of a physical quantity (spatial function) at a 
point, which we call the material point, with the position vector r , is given as [38]: 

 ( ) ( ) ( ) ( ) ( )
m

T
j j

j

u p a= ≡∑r r r p r a r        (5.1) 

where ( )jp r  are the components of the base vector ( )p r , expressed as  monomials in 

the coordinates of  [ ], ,x y zr  so that the basis is complete; the component 1 1p = ; and 

m is the basis size.  The coefficients ( )ja r  are to be determined. The linear and 
quadratic bases for one-dimensional space are: 
 ( ) [ ]1,T x=p r ,   linear, 2m = ;  ( ) 21, ,T x x⎡ ⎤= ⎣ ⎦p r  quadratic,  m=3    (5.2) 
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These bases for the 2D space are: 

 ( ) [ ]1, ,T x y=p r ;       linear,       3m = ;       (5.3) 

 ( ) 2 21, , , , ,T x y x xy y⎡ ⎤= ⎣ ⎦p r ,   quadratic,  m=6      (5.4) 

The coefficients ( )ja r  are functions of the position vector and are 
determined by minimizing a weighted quadratic form: 

 ( ) ( ) ( )
2

1

n
K T K K

K

J w U
=

⎡ ⎤= − −⎣ ⎦∑ r r p r a r         (5.4) 

where K denotes the free point number with the position vectors Kr  and with the 
value of the function KU ; ( )Kw −r r  is the weight function which depends on the 

distance between the material point and free point; and n is the number of free points 
in the domain of influence around the material point.  Minimizing J  with respect to the 
coefficients ( )ja r , the system of equations is obtained: 

 ( )
1

2 0
n

K K K K
j j i

i K

J w p a U p
a =

∂
= − =

∂ ∑ , sum on j: 1,2,...,j m=     (5.5) 

where  ( )K Kw w≡ −r r , ( )K K
j jp p≡ r .  Note that Kw  also depends on the position 

vector r of the material point.  This system of equations can be written in the form: 
 0,      sum on  and : 1, 2,..., ; 1, 2,...,K

ij j iKA a B U K j K n j m− = = =    (5.6) 
where the matrices A and B are: 

 
1

;      , no sum on 
n

I I I K K
ij i j iK i

I
A w p p B p w K

=

= =∑      (5.7) 

The matrices A and B are of order m m× and m n× , respectively. Equation 
(5.6) can be solved for the coefficients ( )ja r , hence. 

 ( ) ( ) ( )1 1

1
;      or     

n
K

j jK
K

a U− −

=

= = ∑a r A BU r A B      (5.8) 

Now, substitution of ( )a r  from (5.8) results into (5.1) follows: 

 ( ) ( )1

1

n
T K

K
K

u U−

=

= = Φ∑r p A BU r        (5.9) 

the interpolation function ( )KΦ r  corresponding to the free point K, is: 

 ( ) ( )1

1

m

K jjK
j

p−

=

Φ = ∑r A B       (5.10) 
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Figure 6 Interpolation by EFG method (2D domain). a) Function ( )u r  at a 

material point with the position vector r. The weight functions ( )Kw −r r  decreases 

with the distance between the material point and the free points K;  max Kd  defines the 

size of the domain of influence for the weight function ( )Kw −r r ; b) Space cell used 

for integration and domain of influence around the integration point. 
 
 
 

The form (5.9) is the same as in the FE method. Here, the interpolation 
functions are expressed in terms of the Cartesian coordinates ix  and K

ix  of the 
material and free point, while in the FE method they are expressed in terms of the 
natural coordinates of a finite element [1]-[9]. 

It is necessary in applications to calculate the derivatives with respect to the 
coordinates ix . From (5.10) follows: 

 ( ) ( )1 1 1
, , , ,

1

m

K i j i i i jjK jK
j

p p− − −

=

⎡ ⎤Φ = + +⎢ ⎥⎣ ⎦∑ A B A B A B    (5.11) 

where , /i ix≡ ∂ ∂ . By differentiation of the equation 1− =A A I   we obtain: 

 1 1 1
, ,i i
− − −= −A A A A       (5.12) 

which can be used to evaluate 1
,i
−A . 

We further give one of the weight functions, of the exponential form [38]: 

 ( )
( ) ( )

( )

2 2
max

max2 2
max

max

exp / exp /
,

1 exp /
0,                                

k k
I I

I II k k
I I

I I

d c d c
d d

w d d c
d d

⎧ − − −
≤⎪

= ⎨ − −
⎪

≤⎩

  (5.13) 

where I
Id = −r r  is the distance between the material point and the free point I; 

max Id  is the domain of influence for the weight function Iw ; k is the parameter (in our 
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applications we use 1k = ); and: 
 max for all free pointsK Jc α= −r r     (5.14) 
where 1 2α≤ ≤  is recommended. Another form of the weight function and graphical 
representations are given in [9]. 

Once the interpolation functions are formulated, the procedure is 
computationally similar to that of the FE method. For an integration point, shown in 
Fig. 6b, the ‘element’ nodes include all free points within the domain of influence. Of 
course, the FE interpolation functions KN  are now replaced by the EFG interpolation 
functions KΦ . 

We perform integration over selected volumes as the subdomains (Figs. 6a,b) 
of the physical field to form the balance equations for the entire domain. In this case 
the subdomains are called volume cells and are defined independently of the free 
points. We simply integrate over the volume cells numerically by, say, Gauss 
quadrature, and add contributions to the matrices and vectors corresponding to 
variables at free points (degrees of freedom of free points) within the domain of 
influence, see Fig. 6b. The independence of volume cells on the free points is the main 
advantage of the EFG method. To increase solution accuracy, number of integration 
points within a cell can be adjusted to the number of free points [38], [39]. 

The EFG model can be coupled with a FE model. Details about this coupling 
are given in [9] and [39]. 

In one example we illustrate the robustness and accuracy of the EFG method. 
 
 
6  EXAMPLES 

 
We here give two typical examples which illustrate application of the discrete 

particle methods described above. 
 
6.1. Unsteady flow between two plates. 

 
We consider flow of incompressible fluid between two stationary infinite 

plates located at y=0 and y=H. The fluid is initially at rest and it is driven by body 
force (given here as acceleration a) parallel to x axis. The analytical solution ( xv v≡ ) 
is given as a series [40]: 

( ) ( )

( )
( ) ( )2 22

3 23
0

,
2

2 14 sin 2 1 exp
2 1n

av y t y y H

naH y n t
H Hn

ν

π νπ

νπ

∞

=

= − +

⎛ ⎞+⎛ ⎞ ⎜ ⎟+ + −⎜ ⎟ ⎜ ⎟⎝ ⎠+ ⎝ ⎠
∑

 

Parameters used in SPH model are: kinematic viscosity ν=10-6m2s-1, fluid density 
ρ=103kgm-3, H=10-3m, a=10-4ms-2, ∆t=10-4s and 30 particles spanning the space 
between plates. 
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Velocity profiles for several times are shown in Fig. 7. It can be seen very 

good agreement between the solutions obtained using DPD, EFG and SPH methods 
and analytical solutions. We also give the finite element solution (FE) which is 
practically the same as the solutions obtained by the discrete particle methods. 

 

 
 
Figure 7 . Velocity profiles for several times. Analytical and numerical solutions 

(methods: SPH- smoothed particle hydrodynamics; DPD – dissipative particle 
dynamics; EFG – element free Galerkin; FEM – finite element. 

 

6.2.  Fluid flow in a microchannel with narrowing. 

We here consider a steady fluid flow between two parallel plates with 
narrowing, Fig. 8a. We solve this example using the DPD and SPH, as well as the 
multiscale (DPD+FE) method to demonstrate applicability of these methods to 
modeling of microcirculation. 

Parameters used in the DPD and SPH models are the same as in Example 6.1 
(see also data in the figure caption). For the comparison, the finite element (FE) 
solution is shown. 

In the FE-DPD multiscale MBS model (Section 3) the local DPD+FE domain, 
as well as the global FE domain, are shown in Fig. 8b. At the common boundary 
between the local and global domains the mesoscale DPD particle velocities are equal 
to the coarse scale FE velocities. The periodic boundary conditions are imposed at the 
common boundary to keep the number of particles constant. 

Velocity profiles are shown in Fig. 8c, where a significant velocity increase in 
the domain of narrowing (stenosis) is notable. The solutions using the DPD, SPH and 
FE-DPD multiscale MBS methods compare well with the FE solution. 
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Figure 8  Steady blood flow in a channel with narrowing. a) Geometry of the channel 
and SPH initial particle positions, b) Local (DPD+FE) and global (FE only) domains 
used for the multiscale MBS method; c) Velocity profiles (FE, DPD, SPH and DPD-
FE multiscale solutions). Data: kinematic viscosity ν=10-6[m2s-1], fluid density 
ρ=103[kgm-3], H=10-3[m], acceleration a=10-3[ms-2 ], pressure gradient. 
 

 
7  SUMMARY AND CONCLUSIONS 
 

A review of some of the discrete particle methods is presented. We have 
selected the methods which are currently of interest for general applications. These 
methods are still in a developing stage and their further refinements and improvements 
may be expected. 

The discrete particle methods have the features which overcome deficiencies 
of the finite element method, which can be summarized as: 
 a) The methods are mesh-free, therefore there is no need for remeshing when 
the computational domain changes significantly during the analysis. The remeshing is 
very complex computational procedure in a general geometrical conditions and is very 
demanding with respect to the computer resources as well as in the computing efforts. 
 b) The discrete particle methods can be applied to complex problems where 
the FE method practically cannot be employed (e.g. flow of colloidal fluids). 
 

However, the discrete particle methods have serious drawbacks: 
 a) The methods demand huge models, with enormous number of equations 
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which can be measured in millions; this is particularly true for 3D conditions; 
 b) The methods are very complex to be used in general 3D analyses. Here, the 
EFG has the advantage with respect to other discrete-type methods, since it can be 
coupled in a straightforward manner to the FE method  [38], [39]; 
 c) Implementation of the boundary conditions are in general very complicated 
to be easily used and still are not developed for general conditions [17]-[20]; 
 d) A multiscale MBS method [21], [22] offers a possibility to couple a 
discrete mesoscale particle method, such as the DPD method, to a continuum-based 
methods (FE, EFG), but further research is needed to establish necessary relations for 
general applications. 
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