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Summary. An analysis is made of the effect of the viscosity on the 
hydrodynamic flow fields and heat transfers past the interface of a spherical 
deforming gas bubble impulsively started at a constant velocity in a viscous 
liquid of large extent initially at rest. Exact solutions for the unsteady (outer 
and inner) flow fields and heat transfers within the boundary layers are 
obtained making appropriate scalings on the position, velocity, temperature 
and time variables in the Navier-Stokes and energy equations. These 
theoretical results apply to any slowly deforming fluid sphere, whatever the 
time-dependence of its radius, provided that the bubble retains its spherical 
shape, the internal circulation is complete, the flow separation is negligible 
and the Reynolds and Peclet numbers are large. 
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1 INTRODUCTION 

Knowledge of the hydrodynamic flow fields past spherical objects such as bubbles 
or droplets moving in a viscous liquid is central in the underlying calculation of heat and 
mass transfers at the interface, or the calculation of the drag force acting on them as well. 
When the sphere radius is a time-dependent variable, one is faced with the calculation of 
the flow of a fluid over another deformable fluid, a problem that was already investigated 
by Hadamard [ ]1  in his earliest work on this subject. The aim of this paper is to analyse 

the effect of viscosity on the unsteady hydrodynamic flow fields and heat transfers 
associated with an impulsively started translating bubble of a given gas, moving at a 
constant velocity in a surrounding viscous liquid of large extent at rest. Our calculations are 
based on the thin boundary layer approximation, according to a perturbative scheme valid 
under the condition of sufficiently large Reynolds numbers. Exact unsteady solutions of the 
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both outer and inner boundary layers around a spherical interface have already been 
derived [ ]2 , in the case where the radius R is kept fixed with time. However, a more 
frequent situation is encountered with deforming bubbles, where R turns out to be a time-
dependent function R(t). It concerns for instance the expansion of compressed gas bubbles. 
In this work, we assume that the bubble retains its spherical shape as it moves. It has been 
shown [ ]3 , that it holds even better since the prevailing (external) Reynolds number is 

moderate ( 500eR ≤ ). For instance, it is known from experimental observations (see [ ]4  
and references therein) that air bubbles rising in water remain spherical provided the 
Reynolds number does not exceed 400. For larger values, a departure from sphericity 
occurs. Fortunately, in our calculations a bound 400eR p  is large enough to ensure the 
validity of the boundary layer approximation since, as shown below, viscid contributions to 
the hydrodynamic flows past the bubble are of order 1 eR  (see Eqs. (51) and (52) 

below) so they are negligible when eR  exceeds four hundred. A sufficiently large value of 
the interfacial tension σ  is also needed to prevent modification of the shape by damping 
inertial effects. In fact, it has been known that a bubble remains nearly spherical even when 
the Reynolds number becomes large, provided that the Weber number 2

02 /eR Uρ σ∞  

remains small [ ]5 . To place numbers on this condition, let us introduce the constant 
1 2(2 )ek σ ρ= Γ  which acts like a capillarity constant for the liquid, when calculated 

with the acceleration Γ  experienced by the bubble (strictly speaking, k corresponds to the 
capillarity constant of the liquid when Γ  is the gravitational acceleration g and σ  its 
surface tension against his own vapor). The above mentioned condition is filfilled provided 
R k≤ . In the impulsive step of the motion, 0R R=  and Γ  is obviously very large 

compared to the characteristic value 2
0U R∞ . This yields an upper bound on the initial 

Weber number 2
02 / 4eR Uρ σ∞ � . In the rectilinear step of the motion, taken at a 

constant velocity, modifications of the shape can also occur by bubble oscillations. The 
latter are characterized by a minimum frequency given by [ ]6  minω = 3 1 2(8 )eRσ ρ . 
Thus, along its motion, the shape of the bubble will remain spherical on average provided 

minU R ω∞ � . This yields another condition on the (dynamic) Weber number 
22 / 16eR Uρ σ∞ � . A further simplification is made through the assumption that there is 

no mass transfer at the interface. It is important to note that due to the variation of the 
bubble radius with time, it follows that the external and internal Navier-Stokes equations to 
solve remain implicitly non-linear even after the simplification of the convective terms. 
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2 DYNAMIC PART OF THE PROBLEM  

 
2.1. Mathematical formulation of the  unsteady problem. 
 

Let us consider unsteady flows past a fluid sphere whose radius 
grows (or decreases) with a given time-dependence law R=R(t). The bubble 
is assumed to be impulsively started at time t=0 into a rectilinear motion at 
constant velocity U∞  in a viscous incompressible liquid initialy at rest. For 
practical calculations, it is more convenient to consider the reversed 
situation where the bubble is at rest in a liquid with a velocity U∞−  at a 
large distance from it. 

 
 

Figure 1. Curvilinear system of coordinates at the special interface. 
 

 
In what follows, the external and internal fluids  will be referenced by the 

subscripts e and i, respectively. Each of them is characterized by its specific gravity ρ , 

and its dynamic and kinematic viscosity, µ  and ν µ ρ= , respectively. For each of them 

also, the relevant Reynolds number is 2 /eR RU ν∞= . In addition, two dimensionless 

numbers have to be considered [ ]7  : the velocity ratio A(t) = [ ]dR dt U∞  and the 

scaling ratio 0( ) ( ) /t R t Rγ = ,  where 0R  denotes the initial value of the radius ( i.e., 

0 ( 0)R R t≡ = ). 
 

We denote by ( , )r r θ=
r

 the position vector in the flow fields, with origin taken 
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at the center of the bubble, where r is the magnitude of rr  and θ  is the angle between rr  
and the upstream axis of symmetry (Fig. 1). For convenience we will also make use of the 
notation r rn=

r r
 where nr  denotes a unit vector taken outward of the bubble surface. The 

conservation equation of mass and the Navier-Stokes equation of motion for the outer flow 
are: 
 0ev∇ =

r
�                                                (1) 

 
1e

e e e e e
e

v v v p v
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∆

∂

r
r r r

                               (2) 

Eq. (1) holds since the external fluid is assumed to be incompressible. In Eq. (2) 

ep  is the pressure field implicitly including the body force due to gravity. 
Similarly, the equations for the inner flow read as: 

 ( ) 0i
i iv

t
ρρ ∂

∇ + =
∂

r
                  (3) 

 
1i

i i i i i
i

v v v p v
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∆

∂

r
r r r 1 ( )

3 i
i

vµς
ρ

+ + ∇∇⋅
r

                 (4) 

In addition to the shear viscosity, the r.h.s. of  the Navier-Stokes equation (4) 
contains a bulk viscosity term ς� . The outer and inner flow fields evr  and ivr  must obey 
the following interfacial condition: 
 ( ) ( )i i e eJ v V n v V nρ ρ= − ⋅ = − ⋅

r rr r r r
                 (5) 

where  [ ]V n dR dt= ⋅
r r

  and J is the radial mass flux across the interface, 

Eqs. (3) and (4) no longer simplify as for the external case since the inlet fluid is 
obviously compressible. We firstly restrict our analysis to the case where the gas density 
within the bubble remains homogeneous, which means 0iρ∇ = . This is a condition for 
internal mechanical equilibrium, which prevails provided the velocity deformation dR/dt is 
very small compared to the sound velocity. According to (5), the conservation equation (3) 
becomes: 

 
3ln ( )i i

i

d J dRv
dt R dt

ρ
ρ

∇⋅ = − = +
r

                 (6) 

Secondly we restrict to the case where the mass flux at the interface is nearly equal 
to zero namely  0J → . It concerns for instance the sudden expansion (or depression) 
of a compressed (or depressed) gas bubble in a surrounding liquid with e ip p≠ , when the 

diffusion process at the interface is negligible, and therefore the mass content 3
i Rρ�  

remains nearly constant with time. In this case, Eq. (6) becomes: 
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3

i
dRv

R dt
∇⋅ =

r
                     (7) 

The outer and inner flow fields then fulfill the same interfacial condition: 

 lim lime ir R r R

dRv n v n
dt→ →

⋅ = ⋅ =
r r r r

                  (8) 

Moreover, since from Eq. (7) iv∇⋅
r

 is only a time-dependent function, the viscid 

contribution iv∇∇⋅
r

�  in the r.h.s. of Eq. (4) is identically zero. 

Making use of the concept of Levich [ ]8  (1949) and Chao [ ]9  of a boundary layer over a 

non-deforming fluid interface, we develop in what follows a method based on the thin 
boundary layer approximation in order to analyse the two flow fields around a spherical gas 
bubble moving in a liquid. Let us denote by ,i eδ  the thickness of thesse boundary layers for 

the inner and outer flow. A typical value for the evolution time of the flow fields within 
these layer sis given by 2

, , ,i e i e i eτ δ ν� . It must remain very small compared to the 

characteristic time of the translating motion ,i e R Uτ ∞� . This analysis provides a very 

simple condition of the thickness of the inner and outer boundary layers 

, ,2 Rei e i eRδ � . It should be appreciated, however, that Moore [ ]10  and Harper 

and Moore [ ]11  have demonstrated that for a bubble under steady conditions, the 

thickness of the boundary layers changes from the front to the rear of the stagnation point. 
Our aim is to analyse the development of the flow fields within these boundary layers for a 
bubble impulsively started from rest. Let 0t  be the time required for the bubble to gain the 

translation velocity U∞  from rest. The impulsive character of the motion is ensured 

provided 0 ,i et τ� . As it was shown first by Sears [ ]12 , we recall that the generated flow 

field around a body impulsively started from rest is irrotational. Following this idea, we 
split the solution for the outer flow as: 
 '

e e ev V v= +
rr r

  with  '
e ev V

rr
�                    (9) 

 '
e e ep P p= +  with   '

e ep P�                  (10) 
In the foregoing equations, the quantities designated with a prime are considered 

as viscid contributions. According to Sears’ analysis, the unperturbed field eV
r

 is taken as 
irrotational. Its components are thus deduced from the potential solution of the 
conservation equation: 
 0eV∇⋅ =

r
,                   (11) 
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while the pressure field eP  itself is a solution of the Euler equation: 

 
1e

e e e
e

V V V P
t ρ

∂
+ ⋅∇ = − ∇

∂

r
r r

                 (12) 

For a non-deforming sphere, the tangential and radial components of eV
r

, namely 

eU  and eV , read: 

 
3

3

1(1 )sin
2e

RU U
r

θ∞= +  ,   r R≥                 (13) 

 
3

3(1 )cose
RV U
r

θ∞= − −  ,    r R≥               (14) 

In the case of a deforming bubble, with R=R(t), these equations still hold but they have to 
be supplemented with a purely radial solution of the continuity equation (11), thus 
proportional to 2n rr

, which corresponds to the purely radial external flow generated by 

the bubble deformation. Denoting it as 
reV
r

 and noting from (14) that lim 0er R
V

→
= , it 

follows that it must fulfill the following interfacial condition: 

 lim
rer R

dRV n
dt→

=
r r

 .                  (15) 

Thus we obtain: 

 2( )
re

R dRV n
r dt

=
r r

,               (16) 

so that: 

 
3

2
3(1 )cos ( )e

R R dRV U
r r dt

θ∞= − − +  ,   r R≥ .             (17) 

Finally, according to decompositions (9) and (10), the outer viscid flow fields 
around a spherical deforming bubble fulfill the equations: 
 ' 0ev∇⋅ =

r
                   (18) 

 
'

' ' ' '1e
e e e e e e e

e

v v V V v p v
t

ν
ρ

∂
+ ⋅∇ + ⋅∇ = − ∇ + ∆

∂

r r rr r r
               (20) 

In Eq. (19), the term ' '
e ev v⋅∇
r r

 has been discarded, since it is of second order. 
Coming back to the internal flow, a similar analysis can be performed. As for the external 
flow, we split ivr  and ip  as follows: 

 '
i i iv V v= +

rr r
   with   '

i iv V
rr

� ,                 (20) 
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 '
i i ip P p= +   with    ' '

i ip P�                 (21) 

iV
r

 corresponds to the circulatory motion of the inviscid fluid within the sphere due to the 

external irrotational flow eV
r

. Its tangential and radial velocity components, namely iU  

and iV , were derived by Hill [ ]13 : 

 
2

2

3 (1 2 )sin
2i

rU U
R

θ∞= − − ,   r R≤ ,                (22) 

 
2

2

3 (1 )cos
2i

rV U
R

θ∞= −  ,        r R≤ .                              (23) 

Since iV
r

 is rotational, it fulfills the conservation equation: 

 0iV∇⋅ =
r

                  (24) 
It should be appreciated that when the bubble starts to move, if the inlet flow is assumed to 
be at rest, i twill take a finite time, of order 0t , to reach the Hill vortex. The condition 

0 it τ� , however, ensures that the Hill solution applies practically from the earlier stage 
of the viscid flow field expansions (i.e., from rest) in our calculations. 

Solutions (22) and (23) still apply to the case of a uniformly deforming bubble, but 
as for the outer flow, they have to be supplemented with a purely radial solution 

ri
V
r

 of Eq. 
(7) in order to account for the purely radial internal flow generated by the bubble 
deformation. Once again taking into account the interfacial condition: 

 lim
rir R

dRV n
dt→

=
r r

                   (25) 

we obtain (since 3r∇⋅ =
r

): 

 ( )
ri

r dRV n
R dt

=
r r

                  (26) 

Finally, the radial component of the inner inviscid flow field reads: 

 
2

2

3 (1 )cos
2i

r r dRV U
R R dt

θ∞= − +                (27) 

In comparison to the external case, one obtains the following equations for the inner flow: 
 ' 0iv∇⋅ =

r
                  (28) 

'
' ' ' '1i
i i i i i i i

i

v v V V v p v
t

ν
ρ

∂
+ ⋅∇ + ⋅∇ = − ∇ + ∆

∂

r r rr r r
            (29) 
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2.3. Perturbative method of analysis. 
 
Working with the ( , )r θ  system of coordinates, one has ((1 ) , )r rθ∇ = ∂ ∂ ∂ ∂ , so that 
the continuity equation (18) and the projection of the equation of motion (19) along the 
tangential direction read: 

                     (30) 

                (31) 
'
eu  and '

ev  denote the tangential and radial components of the flow field '
evr , respectively. 

Following a procedure suggested by Boltze in his study of boundary layers over a body of 
revolution, we now introduce a curvilinear system of coordinates 14 , as shown in Fig. 1. 

We denote by x Rθ=  the arc length measured along any meridian from the front 
stagnation point, and y the coordinate normal to the bubble surface, taken outward as 
positive defined according to r=R(t)+y. In the thin boundary layer approximation, valid at 
large Reynolds numbers, one obtains y R� , since ,i ey δ� . Then, Eq. (31) can be 

simplified as follows. First, from the above definition of y, one has: 

                 (32) 
Thus, transforming from ( , )r θ  to ( , )y θ  makes the contribution dR dt�  

within eV  (cf. Eq. (17)) to be cancelled when introduced in the equation of motion (31). 
Next, according to the usual method of perturbation, the following approximations are 
made: 

3 (1 )sin
2

eU y
U R

θ
∞

≈ −  ,   0y ≥ ,                               (33) 

3 cos (1 2 )eV y y
U R R

θ
∞

≈ − + −A  ,   0y ≥ .               (34) 

We obtain  
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'

'1 ( sin ) sin 0e
e

vu
R y

θ θ
θ

∂∂
+ =

∂ ∂
                (35) 

 
' ' '

'3 ( cos sin 2 cos )
2

e e e
e

u u uU u y
t R y

θ θ θ
θ

∞∂ ∂ ∂
+ + −

∂ ∂ ∂
   

   
' 2 '

22 e e
e

u uU y
R y y

ν∞ ∂ ∂
− =

∂ ∂
A                   (36) 

In Eq. (36), the time derivative is now implicitly taken at a constant y value. The 
term proportional to [ ]'

e ev U r∂ ∂  in the left-hand side of Eq. (31) has been discarded 

since, as shown below, '
ev  is of order [ ] '

ey R u  in the boundary layer, i.e., of a second 

order. On the right-hand side of Eq. (31) the contribution of the pressure term can be 
neglected. This simplification is based on the following dimensional analysis. As we are 
concerned with viscid contributions, it appears meaningful to scale '

eu  with /e eν δ , t with 
2 /e e eτ δ ν= , '

ep  with 2( / )e e eρ ν δ  and finally r by R. It turns that the ratio of 
'1 (1/ ) /e er pρ θ∂ ∂  over ' /eu t∂ ∂  is of order /e Rδ . For a similar reason, the viscous 

term '
e euν ∆�  is restricted to 2 ' 2( / )e eu yν ∂ ∂  since the contribution 2 ' 2( / )e eu xν ∂ ∂  is of 

an order 2( / )e Rδ  smaller. Finally, it should be noticed that with these considerations, Eq. 

(36) only involves the tangential component of evr , while the radial one is derived by 
integration of the continuity equation (35). 

Very similar conclusions apply to the internal case. At first order we obtain: 

 
3 (1 4 )sin
2

iU y
U R

θ
∞

≈ +  ,   0y ≤ ,                (37) 

 3 cos (1 )iV y y
U R R

θ
∞

≈ − + + A  ,   0y ≤                 (38) 

and then: 

 
'

'1 ( sin ) sin 0i
i

vu
R y

θ θ
θ

∂∂
+ =

∂ ∂
                (39) 

 
' ' '

'3 ( cos sin 2 cos )
2

i i i
i

u u uU u y
t R y

θ θ θ
θ

∞∂ ∂ ∂
+ + −

∂ ∂ ∂
 

               +
' 2 '

2
i i

i
u uU y

R y y
ν∞ ∂ ∂

=
∂ ∂

A                (40) 
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2.3. Conditions at the interface. 
 
The foregoing equations have to be solved with the following conditions at the interface, 
valid when 0y →  : 

 ' '
0 0( ) ( )e y i yu u= ==                   (41) 

This is the usual « non-slip » condition at the interface, namely: 
 0 0( ) ( )e y i yu u= ==                                 (42) 

Since 0 0( ) ( )e y i yU U= == , the condition (41) follows immediately. 

A second condition emerges from the requirement of continuity of the shear stress, i.e.: 

 e e i i
e i

r R r R

u u u u
r r r r

µ µ
= =

∂ ∂⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
                (43) 

Since '
e e eu u U= −  and '

i i iu u U= − , it follows from the potential solution (33) and the 
Hill solution (38) that: 

 
' '

0 0
3( ) ( ) (2 3 )sin
2 ( )

e i
e y i y e i

u u U
y y R t

µ µ µ µ θ∞
= =

∂ ∂
− = +

∂ ∂
.              (44) 

Similarly, since '
e e ev v V= −  and '

i i iv v V= − , it follows, taking into account (15) and 
(25), that the radial components of the outer and inner flow fields must obey the interfacial 
conditions: 
 ' '

0 0( ) ( ) 0e y i yv v= == =                  (45) 

 
 
2.4. Determination of the tangential and radial velocity components of  both outer and 
inner flows. 
 

First, by introducing the dimensionless variables: 

 
'
e

e
uu

U∞

=%  ,   
'
i

i
uu

U∞

=%                   (46) 

 
0

yy
R

=%                    (47) 

then by defining the appropriate scaled variables as: 
 1 2

e eu uγ= % ,   1 2
i iu uγ= %                  (48) 

 1 2y yγ −= % ,                   (49) 
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we found recently [ ]15  the solutions of the equations (36) and (40). It remains to complete 

this procedure by introducing also the dimensioless time variable according to: 

 
0

Ud
dt R
τ

γ
∞=  

by using the scaling ratio :  0( ) ( ) /t R t Rγ =  and the identity :  0 /R d dR dt
U dt U

γ

∞ ∞

≡ =A , 

whence: 

 
0

'( )
( ')

t dtt U
R t

τ ∞= ∫                   (50) 

It should be noticed that since the integrant is positive, (50) guarantees that the 
transformation tτ ↔  is invertible: 

So, making use of the notation 4/ sinβ ς θ= , the scaled tangential velocity 

components of both the outer and inner flows are [ ]15  now: 

                 (51) 

                 (52) 
in which the ni erfcZ  functions (here with n=1) stand for repeated integrals of the error 

function of Gauss [ ]16 , where: 

                 (53) 

                 (54) 
The arguments eZ  and iZ  are defined as: 

 1 2( )
2

oee
e

RyZ
β

=    and   0 1 2( )
2

ei
i

Ry
Z

β
= ,               (55) 

where 
 

0 02 /ee eR R U ν∞=  and  
0

02 / iei
R R U ν∞=                (56) 

The radial velocity compnents of both outer and inner flows are deduced by integration of 
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the continuity equations (35) and (39), taking into account of the conditions: 

                (57) 

                (58) 
Solutions (51), (52), (57) and (58) for the tangential and radial components of the 

flow fields are analogous to those derived [ ]2  in the case of a non-deforming bubble. It 

should be appreciated, however, that they involve an implicite time dependence, as the 
quantities eu , iu , ev  and iv  are now scaled by the dimensionless ratio 0( ) /R t Rγ = , 
according to laws (48). This time-dependence is also contained within the space variable 
y  itself, scaled according to (49). They also exhibit an explicit time-dependence through 

the dimensionless time τ  defined by (50), which appears in the exponential 6e τ−  in Eqs. 
(57) and (58), and which is contained indirectly via ς  within β , according to Eqs. (53) 
and (54). The above-mentioned solutions are valid whatever the law of deformation of the 
bubble radius with time, provided the condition ( / ) / 1dR dt U∞= �A  applies. 

It should be appreciated that in the opposite limit �A 1 , the equations of motion 
no longer have non-zero solutions compatible with the interfacial conditions, except the 
inviscid solutions (16) and (26) which correspond to a purely radial flow. This physically 
corresponds to the fact that a purely radial motion no longer involves shear effect, so that 
the viscous effect in that case is only contained within the bulk viscosity term in the 
Navier-Stokes equation. Finally, in the intermediate regime 1�A , terms proportional to 
A  cannot be neglected. At present, we have not been able to solve these equations exactly, 
but we will try to do it by expansions of the unknown functions in successive powers  
of A . 
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3 ON THE TRANSIENT HEAT TRANSFER 

3.1. Problem statement and major assumptions 
 

We consider a fluid sphere of a given time-depending radius R(t), initially at a 
uniform and constant temperature 0T  and impulsively started at time t=0 into a rectilinear 

motion at constant velocity U∞  in another fluid of infinite extent. We imagine that at time 

t=0 the temperature of the continious phase fluid undergoes a step change from 0T  to T∞ . 
It is desired to examine the transfer response behavior of the thermal boundary layers both 
inside and outside of the growing fluid sphere. While such idealized conditions can hardly 
be realized in practice, the results are useful in that they not only bring forth the salient 
features of the problem but also can be generalized to accommodate those instances where 

0T  and T∞  are prescribed functions of time. 
Following the usual procedure of making order of magnitude estimates of the 

various terms in the governing conservation equations, we establish that the energy 
equations for the thermal boundary layers are: 

              (59) and (60) 
with the corresponding initial, boundary and interfacial conditions as follows: 

               (61) 

  
Taking into account that all the coefficients ( , )e eu v  and ( , )i iu v  are found 

preliminary after (9), (20), (51), (52), (57), (58), the only possible integration of the 
preceeding equations (59) and (60) has to be carried out numerically. 
For a moment, we are going to analyse the thermal problem by using the following 
assumptions: 

1. Fully developed internal circulation. Winnikov and Chao [ ]18  have 

experimentally demonstrated that, in highly purified systems, moving droplets invariably 
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exhibit internal circulation. It is usually of such an extent that the wake becomes relatively 
insignificant . 

2. Inviscid flow fields. Since only large Reynolds number is of interest, the 
inviscid approximation is valid. This is particularly true if the internal circulation is 
vigorous. Accordingly, the external flow is irrotational and the internal field is that of Hill’s 
spherical vortex. Generally speaking, the viscous effect is small when the Reynolds number 
exceeds two or three hundred. It may be of interest to note that if the hydrodynamic 
boundary layers are developing simultaneously with the thermal boundary layers, the 
inviscid approximation is even better [ ]19 . 

3. Thin boundary layers. Under the condition of large Peclet numbers, the 
boundary layers are thin except the region close to the rear stagnation. 

4. Constant properties and negligible dissipation. These are the usual assumptions 
and are known to be valid except that the change of viscosity with temperature may deserve 
some consideration in certain instances. In view of the inviscid approximation adopted in 
this analysis, refinements to account for such effect may not be justified. 
 
3.2. Mathematical analysis. Scaled energy equations. 
 

So, taking into account of these assumptions, we establish that the energy 
equations for the thermal boundary layers are: 

 
2

1 1 1 1
2

e e e e e
e e

T T U T TV a
t y R yθ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 ,   0y f ,                       (59’) 

 
2

1 1 1 1
2

i i i i i
i i

T T U T TV a
t y R yθ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
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where the functions , , ,e e i iU V U V  are already found (33), (34), (37), (38). 
Now, to solve the equations (59’) et (60’), with the corresponding conditions (61), 

we can use the same type of procedure as in the dynamic part of the problem. 
Let us first introduce the dimensionless variables: 
Now, to solve the equations (59’) et (60’), with the corresponding conditions (61), 

we can use the same type of procedure as in the dynamic part of the problem: 
Let us first introduce the dimensionless variables: 
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With these notations, the energy equations (59’) and (60’) read as: 
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In these equations, the time derivative is now taken at a constant y%  value, 1γ −  is 

the inverse of the scaling ratio 0( ) ( ) /t R t Rγ =  and 
0eeP  and 

0eiP  are the outer and inner 

Peclet numbers at time t=0 : 
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e
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ei

i
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At this stage, we proceed to a time scaling on the variables y% , 1eT%  and 1iT% , 
according to the following laws: 
 ay yγ=%                  (67) 

 1 1
b

e eT Tγ=%  ,     1 1
b

i iT Tγ=%                  (68) 
The time derivative is then transformed as follows : 
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y y e i
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At y%  kept fixed, from (67) we obtain: 
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then from (70): 
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so that finally from (69): 
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Making use of the foregoing transformations, after straightforward algebra, the 
energy equations (64) and (65) become: 
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It remains to complete our analysis by introducing the dimensionless time variable 
as follows : 
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whence: 
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It can be noticed that, since the integrant is positive, from (75) we see that the 
transformation tτ ↔  is also invertible. 

So, taking into account again the identity :  0 /R d dR dt
U dt U

γ

∞ ∞

≡ =A  ,  the scaled energy 

equations (72) and (73) become: 
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These equations have to be solved with the conditions (61) which, for the scaled 
energy equations, read: 

( 0)y f  

1 1 1( , ,0) ( , ,0) 0 ( , ,0) 0e e eT y T T y T yθ θ θ∞= →→ = →→ =% %  



 
 
 
 
 
 

Radomir V. Ašković 

. 

 1 1 1( , , ) ( , , ) 0 ( , , ) 0e e eT t T T t Tθ θ θ τ∞∞ = →→ ∞ = →→ ∞ =%              (78) 

 ( 0)y p  

 1 0 1 1( , ,0) ( , ,0) 1 ( , ,0) b
i i iT y T T y T yθ θ θ γ −= →→ = →→ =% %  

              1 0 1 1( , , ) ( , , ) 1 ( , , ) b
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 1 1(0, , ) (0, , )e iT T
y y

θ τ θ τ∂ ∂
Ω =

∂ ∂
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where 

 1 2( )e i

i e

a
a

λ
λ

Ω =  

In what follows, we will restrict ourselves to the case of a bubble with a slow 
deforming velocity, i.e., 1�A , which allows to neglect the terms proportional to A  in 
the preceeding equations. Next, to complete our analysis, we will chose the exponents in 
the scaling relations. Namely, we take a=1/2 in order that the r.h.s. of the above equations 
involve only the initial Peclet number 

0eeP . Finally, we retain b=0 in order that the both 

initial and boundary conditions of the inner flow (79) become equal to unity. 
With these prescriptions, the scaled variables are now defined as : 

 1 1e eT T= %  ,     1 1i iT T= % . 

 1 2y yγ −= % . 
The governing conservation equations then can be written as: 
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The initial and boundary conditions (78) and (79) become: 

  1( , ,0) 0eT y θ = ,   1( , , ) 0eT θ τ∞ = , 

1( , ,0) 1iT y θ = ,   1( , , ) 1iT θ τ−∞ =              (83) 

and the interface conditions (80) are : 
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 1( , ,0) 0eT y θ = ,   1( , , ) 0eT θ τ∞ = , 

 1 1(0, , ) (0, , )e iT T
y y

θ τ θ τ∂ ∂
Ω =

∂ ∂
.                (84) 

By analogy to the well-known Chao’s solution [ ]17  in the case of a non 

deforming bubble, we found the solutions of the scaled energy equations (81) and (82) with 
the conditions  (83) and (84) as follows: 
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3.3. Computation of the temperature profiles. 
 

In this section, we apply the formalism detailed above to the case of a deforming 
gas bubble whose radius grows uniformly with time according to 0( )R t R At= + , and 

which is rising in a surrounding liquid at a constant velocity U∞ . Thus we obtain 

0( ) 1tγ τ= +A , with A U∞=A  and 0 0U t Rτ ∞= . Computations of the temperature 

profiles versus 0y y R=%  were performed in the plane 150θ = ° , for three values of 

U≡A , namely 0 (constant radius), 0.1 and 0.2, and for 0 1τ =  and 
0

500eeP = , 

2e ia a = , 2Ω = . 

As a main result, it follows (Fig. 2) that the time scaling of  y%  through 
1 2y yγ −= %  has the great interest. Although the dynamic Reynolds numbers 

2 /ee eR RU ν∞=  and 2 /ei iR RU ν∞=  increase with time like R(t), the arguments of 

the erfc-functions in the expressions (85) and (86) decrease with time like 1 ( )R t . It 
clearly features the importance of the time scaling laws detailed above on the behavior of 
the viscid hydrodynamic flows and heat transfers past a deforming spherical bubble, both 
with time and space. 
 

4 CONCLUSION 

As we studied recently [ ]22  the effect of the viscosity on the transient heat  
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Figure 2. . Transient radial temperature distributions (
0

500
ee

P = , 2Ω = ). 

 
transfer to a translating non deformable droplet, the aim of this work is to calculate 

the viscid contributions to the hydrodynamic flow fields and heat transfers past a deforming 
spherical gas bubble which is impulsively started in a rectilinear motion at a constant 
velocity in a viscous fluid of large extent at rest. Exact solutions of the Navier-Stokes and 
energy equations for the outer and inner flows are obtained within the frame of the thin 
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boundary layer approximation, valid at large Reynolds and Peclet numbers. As the bubble 
is of a time-dependent radius, it follows that the usual dimensionless parameters, such as 
Reynolds  numbers  for instance,  are actually dynamic  quantities. In order to remove  this  
time-dependence, the equations of motion and heat transfer are rewritten in a appropriate 
scaled form through powers of a dimensionless quantity defined by the radius of the 
growing bubble divided by its initial value. In the limit where the rate of deformation is 
assumed to be small compared to the translation velocity, we show that these scaled 
equations of motion and heat transfer are analogous to those derived in the static case, 
provided an appropriate dimensionless time variable is introduced. The solutions for the 
flow fields and heat transfers derived in this work are valid whatever the law of 
deformation of the radius of the bubble with time, provided the above-mentioned limit is 
ensured. A numerical application to the case of a uniformly deforming gas bubble shows 
clearly the importance of these scaling laws on the space and time behaviors of the 
hydrodynamic flows and heat transfers 

5 PRSPECTIVES 

 
All the exact solutions for the unsteady outer and inner flow fields and heat 

transfers within the corresponding boundary layers, obtained here, are valid whatever the 
law of deformation of the bubble radius with time, provided the condition 1�A  applies. 
However, in the opposite case, an iterative method of resolution based on double 
expansions of the velocity components and temperature fields in successive powers of A  
with coefficients functions of  Legendre polynoms can be worked out. 

Bubble growth in superheated fluids is of key interest in many industrial problems, 
such as boiling phenomena in general and in flash evaporation in particular. Most of the 
large amount of the research on such bubble growth has been conducted first for pure 
liquids, but also more recently about bubble growth in superheated solutions with a non-
volatile solute, a topic of both fundamental and practical importance, with applications 
including a wide variety of separation processes (such as water desalination) and energy 
conversion processes (such as ocean-thermal energy conversion), or nuclear reactor safety. 
Mikic et al. [ ]20  have developed a simple general equation for calculating bubble growth 

rates (without motion) in pure liquids, starting with a bubble radius of zero, in the inertia- 
and heat-transfer-controlled regimes. 

 3 2 3 22 ( 1) ( ) 1
3

R t t∗ ∗ ∗⎡ ⎤= + − −⎣ ⎦                 (87) 

Then Miyatake et al. [ ]21  have improuved this formula and found a new 

universal equation for bubble growth (without motion) not only in pure liquids but also in 
binary solutions with a non-volatile solute, which is valid through all the bubble growth 
history, i.e., in the surface-tension, inertia-, and heat-transfer-controlled regimes. It would 
be interesting to study the effect of the viscosity on the flow fields and heat transfers past 



 
 
 
 
 
 

Radomir V. Ašković 

. 
the interface of a spherical deforming bubble with the time-dependent dimensionless radius 
(87) for instance rising in a viscous liquid. 
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VISKOZNI DOPRINOS STRUJANJU I PRENOSU TOPLOTE 
PRI KRETANJU SFERNOG DEFORMABILNOG GASNOG MEHURA 

 
 
Ovoga puta se analiziraju oba granicna sloja, dinamicki i temperaturski, pri naglo 
pokrenutom DEFORMABILNOM sfernom gasnom mehuru kroz neku viskoznu tecnost, a 
za velike vrednosti brojeva Rejnolds-a i Pekle-a. Primenom postupka « podesavanja 
razmera » (scaling procedure) na sve promenljive velicine (prostorne i vremenske 
koordinate, brzine, temperature) u Navije-Stoksovim i energijskim jednacinama, nadjena su 
tacna resenja granicnih slojeva s obe strane opne mehura, spoljasnje i unutrasnje. Dobijena 
teorijska resenja vaze za sporo rastuci mehur, pod uslovima : da ostaje sfernog oblika, da 
postoji interna cirkulacija i da nema odvajanja spoljasnjeg granicnog sloja 
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NOMENCLATURE 
 

eR    Reynolds number 

eP    Peclet number 

R     bubble radius 
U∞    bubble velocity 

λ      thermal conductivity 
a      thermal diffusivity 
µ     dynamic viscosity 
ν      kinematic viscosity 
ρ      density 
e       subscript for the external liquid 
i        subscript for the internal gas bubble 
 
              < < 
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