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Summary. We present some particular solutions of the creeping modes of a 
system of  ordinary fractional order differential equations with analysis of  
“creeping” modes. By using these particular solutions and modes, a series of  
engineering dynamical systems are investigated and the same “creeping” 
modes' different kinds of  system dynamics are identified. Main research 
results presented in this review paper are analytical expressions of  modes of 
three fractional order basic as well as  hybrid system vibrations with finite 
numbers of  degrees of freedoms as well  as hybrid system containing 
subsystems with coupled deformable bodies by fractional order distributed 
standard light elements in the coupling layers. It is shown that two time 
modes (partial solutions) are pure periodical, and the corresponding number 
of   time modes (particular solutions) are “creeping modes” as results of  
elastic and /or creeping properties of deformable bodies and also  influence 
of the standard light elements to the periodical mode vibrations with 
corresponding frequencies. 

Chain dynamics of the homogeneous system – sandwich multi beam, multi 
plate systems as well as multi pendulum systems are investigated by using 
mathematical analogy and phenomenological mapping. 

Keywords: Hybrid system, coupled subsystems, coupled dynamics, 
deformable body, standard light creep element, fractional order derivative, 
time mode, analytical expression, Laplace transform, “creeping” mode, 
normal rheolinear modes. 

1 INTRODUCTION 

  Тhe interest in the study of coupled subsystems, as new qualitative hybrid 
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systems, has grown exponentially over the last few years because of the theoretical 
challenges involved in the investigation of such systems. A survey as short 
introduction-review of author’s research results in area of dynamics of different kinds 
of hybrid systems, as well as an analytical approach to the discrete material particle 
system dynamics containing creep elements described by fractional order derivative, 
are presented.  

     Mechanics of hereditary medium (material) is presented in scientific literature 
by an array of fundamental monographs Rabotnov, Yu.N.[80], Rzhanitsin, A.R. [81], 
Savin G. N., Ruschisky Yu. Ya [82].  New Analytical mechanics of discrete hereditary 
systems is presented by  O.A.Gorosko  and K. (Stevanovic) Hedrih in a monograph [8] 
and papers [9-12].  Knowledge of Mechanics of hereditary medium as well as  
Analytical mechanics of discrete hereditary systems is widely used in engineering 
analyses of strength and deformability of constructions made of new construction 
materials and presented by different kinds of  theoretical models and approaches to 
solving problems and to obtained analytical expressions of the system dynamics and 
phenomena dynamics. 

These fields of mechanics are being intensively developed and filled up with new 
research and cited monographs [80-82]. Actuality of that direction of the development 
of mechanics is conditioned by engineering practice with utilizing new construction 
materials on synthetic base, the mechanical properties of which often have express 
creep rheological character. 

 Nowadays, scale of utilization of these materials can be compared with the 
scale on which metals are used. New construction materials possess both high strength 
and different useful physical characteristics: dielectric’s properties, radio conductivity, 
transparentness, high deformability and low (small) weight are   what makes them 
irreplaceable in many cases. Successes of chemistry are enabling production of new 
synthetic materials with ordered properties. 

 The university book D.P. Rašković [78] contains the classical theory of 
longitudinal and transversal oscillations of homogeneous rods and beams, and in [73] 
we can find mathematical theory of corresponding partial differential equations.   
R.E.D Bishop’s paper [3] contains some results on longitudinal waves in beams. 

 In two papers[64, 65] by K.S. Hedrih and A. Filipovski, the authors present 
results of original research on nonlinear and rheolinear oscillations of longitudinal 
vibrations of an elastic and rheological rod with variable cross section, which has 
application in engineering systems such as ultrasonic transducers, and ultrasonic 
concentrator and contain theoretical methods for processing of the vibration state of 
the ultrasonic concentrator in the form of a rod with variable cross section.  

Transversal vibration beam problem is classical, but in current university books on 
vibrations, we can find only the Euler-Bernoulli’s classical partial differential equation 
for describing transversal beam vibrations. In some references  like Ref. [84] we can 
find a nonlinear partial differential equation for describing transversal vibrations of the 
beam with nonlinear constitutive stress strain relation of the beam nonlinear ideal 
elastic material. In the last time period new models of constitutive stress-strain 
relations of rheological new beam materials [3] can be found in the journal. In the 
university book [78] of Rašković extended partial differential equations of transversal 
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ideally elastic beam vibration are presented with members by which influences of the 
inertia rotation of the beam’s cross section and shear of the cross section by transversal 
forces is presented.   

Two papers [15,16] by K.S.Hedrih present results on transversal vibrations of 
prismatic beam of hereditary material. Series of  papers [4,5, 6, 15, 18, 19 27 45, 48, 
51, 58] by K.S.Hedrih contain new results on transversal vibrations of prismatic beam 
of the hereditary material or of a fractional derivative order constitutive relation of 
beam material. 

Papers [14, 16,  21, 23, 24, 26, 30, 35, 41, 44, 45, 46, 50, 52, 53, 54-55, 61-64] 
contain some models of discrete mechanical system dynamics as well as a method of 
discrete continuum [42] with hereditary light standard element as constraints and with 
light standard creep element as constraints of the fractional order derivatives in the 
behaviour of materials [34]. Standard hereditary element is a constraint in  systems  
that are investigated and series of the properties of their dynamics are pointed out and 
described. Characteristic rheolinear modes with creep properties are expressed by 
analytical expressions. 

Papers [21, 42, 45] contain some models of discrete continuum with hereditary 
light standard elements as the constraints and with light standard creep element as 
constraints of the fractional order derivatives in the behaviour of materials. Standard 
hereditary element is a constraint in the systems which are investigated and described 
in the monograph [9] as in some of cited papers as used elements.  

Integral theory of analytical dynamics of discrete hereditary systems is presented in 
the monograph [8] and their applications are published in the series of the papers. 

 In Ref. [7] fractional calculus is mathematically based by corresponding integral 
and fractional order differential equations.  

Refs. [15] and [16] are in relation to transversal vibrations of the beam of the 
hereditary material and the stochastic stability of the beam dynamic shapes, 
corresponding to the n-th shape of the beam elastic form. 

In paper [1] stochastic stability of viscoelastic systems under bounded noise 
excitation by Ariaratnam S. T. is investigated. Ref [51] is a contribution on the 
Ariaratnam idea for investigations of transversal vibration of a parametrically excited 
beam and influence of rotatory inertia and transverse shear on stochastic stability of 
deformable forms and processes. Also, Lyapunov exponents are obtained. Asymptotic 
method of averaging is applied in the previous Reference [51] based on the source 
monograph by A Mitropolskiy [72-77]. This monograph contains the asymptotic 
method of averaging generalized for application to nonstationary nonlinear processes. 

 University books by  D.P. Rašković [78, 79] contain the classical theory of  
strings, beams, plates and shells as well as the longitudinal and transversal oscillation 
theory  of homogeneous rods and beams, as well as partial differential equations of 
static and dynamic equilibrium of rods with different cross sections, plates and shells. 

Transversal vibration plates and shells problem is classical, but in current 
university books on vibrations, we can find only classical partial differential equations 
for describing transversal plate vibrations, as in the case of beams and rods. In some 
monographs we can find a FEM method applied to transversal plate and shell 
vibrations with nonlinear constitutive stress strain relation of the plates or shells ideal 
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elastic material.  
In the last time period new models of constitutive stress-strain relations of the 

rheological plate new materials  can be found in the author’s  journal papers and 
monograph papers (see References  [ 20, 12, 23, 27-20, 31, 34, 37, 47, 57, 60, 57, 70]).   

A series of previously cited papers by Hedrih contain analytical results of multi 
plate, multi beam and multi belt system vibrations where plates or beams or belts  are 
coupled by standard light elastic, or hereditary or creep elements distributed between 
listed deformable bodies. 

Some author’s initial results of partial fractional order differential equations of 
creeping and vibrations of plate are presented as a short lecture at ESMC in 
Thessalonki in 2003, and published in Book of short Abstracts as well as in the sixth 
pages short journal paper published in Reference [34]. In this Reference [34] a 
fractional-differential operator with the creep material parameters are introduced. Plate 
material is creeping and constitutive relation of stress-strain state is expressed through 
fractional order derivatives. A partial fractional order differential equation of deformed 
middle surface of the plate has been derived for the case of plate own-free oscillations. 
For that case, by using a numerical experiment over the solution of the ordinary 
fractional order differential equation ( ) { } ( )[ ] 022

0 =++ tt mnmn TT α
αωω tD&&  , time-

function surfaces ( )αωω α ,,, 0 mnmnmn tT  have been constituted as visualizations used 
for expressing the creeping properties of the plate vibration for some special cases. 
Generalized results was prepared and submitted for possible publishing.  . 

In this paper, a complete theoretical approach and series of  cases of creep 
properties of material plate are taken into account and generalized partial fractional 
order differential equations of transversal vibrations with creeping properties are 
derived, and analytically solved for series of special cases accompanying by 
corresponding boundary and initial conditions. These results are new and suitable to be 
a new additions to classical theory of multi plate system dynamics as well as to be 
included in the university books for extended and advanced university coerces of 
dynamics of deformable bodies with different material properties. 

 
2   MODEL OF CREEP RHELOGICAL BODY 

 
By using stress-strain relation from cited References [6, 7, 65, 66], a single-axis 

stress state of the creep hereditary type material is described by fractional order with 
respect to time derivative in the form of fractional order differential relation in the 
form of three parameter model: 

 ( ) ( ) ( )[ ]{ }tEtEt t εεσ α
αD+−= 0                                            (1) 

where  [ ]•α
tD   is operator of fractional thα order derivative - the fractional  order 

derivative of strain  ( )tε  with respect to time   in the following form: 

  ( )[ ] ( ) ( )( ) ( )
( )

( )
τ

τ
τε

α
εεε α

α
α

α
α d

tdt
dt

dt
tdt

t

t ∫ −−Γ
===

01
1

D                        (2) 
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where  0E  and αE  are instant and prolonged elasticity modulus, respectively, while   

α  is material relaxation parameter, ratio number from interval  10 <<α , 
determining fractional order of time derivative, and   is Euler gama function. We shall 
use relation (2) only for  0≥t  
 
2. 1* Longitudinal creep vibrations of a fractional order derivative constitutive 
relation of the rheological rod with variable cross section 

 
    Let us consider a deformable rod of a fractional order derivative constitutive 

relation of material with variable cross section, whose axis is straight. 
Figure 1. shows an element of the rod of variable cross section ( )zA  , where z   

is axis’s length coordinate of the rod. Normal force acting on the cross section at the 
distance  z  measured from left side of the rod is: 

 ( ) ( ) ( )tzzAtzN z ,, σ=                                       (3) 
while it’s value in cross section on distance z dz+   is: 

   ( ) ( ) ( ) ( ) ( )[ ]dztzzA
z

tzzAtdzzN zz ,,, σ
∂
∂σ +=+           (4) 

where t  is time, and ( )tzz ,σ  is normal stress in the points of cross section that is, 
according to introduced assumption, invariable on the cross-section. Moreover 
deplaning of cross section is negligable considering that all points have the same axial 
displacement determined by coordinate ( )tzw , , where ρ  is rod material’s density, and 
( )tzq ,  is distributed volume force. 

 

A(z)

z 

N N+dNdFin 

dz 

q(z,t) 

 
Figure 1. Element of the rod with elementary length dz . 

 
We assume that rod is made of a creep rheological material and therefore the  

stress-strain-state equation written in the form (1). Taking that strain in axis’s:direction 

of rod is: ( ) ( )
z

tzwtzz ∂
∂ε ,, = , previous stress-strain-state relation (1) can be written in 

following form as: 

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡+=

z
tzwE

z
tzwEtzz ∂

∂
∂

∂σ α
α

,,, 0 tD            (6) 

Introducing previous fractional order derivative stress-strain relation into equilibrium’s 
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equation (5), and if we mark   
ρ

02
0

Ec =  and 
ρ
α

α
Ec =2  than previous equation (5) gets 

the following form: 

       ( )
( ) ( ) ( )

( ) ( ) ( ) ( )tzq
Ez

tzwzA
zzAc

c
z

tzwzA
zzAt

tzw
c

,1,1,1,1
2
0

2

2

2

2
0

+⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡−

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ αε

tD    (7) 

 
 
2. 2* Free longitudinal creep vibrations of a rod with variable cross section by 
fractional order derivative in constitutive relation of the rod’s material 

 
 Solution of the following partial fractional order differential equation: 

           ( )
( ) ( ) ( )

( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡−

z
tzwzA

zzAc
c

z
tzwzA

zzAt
tzw

c ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ αε ,1,1,1

2
0

2

2

2

2
0

tD          (8) 

for free longitudinal creep vibrations of the rod with cross section can be looked for by 
using Bernoulli’s method of particular integrals in the form of multiplication of two 
functions, from which the first ( )zZ  depends only on space coordinate z , and the 
second is time function  ( )tT : 

 ( ) ( ) ( )tTzZtzw =,                                      (9) 
Assumed solution (9) is introduced in previous partial fractional order differential 

equation (8) and by introducing the constant 2
0

22
0 ck=ω it is easy to share previous 

partial fractional order differential equation on following two ordinary differential 
equations, one of which is fractional order ordinary  differential equation:  

 *first,  a second order differential equation on unknown ( )Z z   eigen function   
of space coordinate z  , with variable coefficients : 

  ( ) ( )
( ) ( ) ( ) 02 =+′
′

+′′ zZkzZ
zA
zAzZ                   (10) 

and  * second, fractional order differential equation on unknown time-function   
( )tT  in the form: 

 ( ) ( )[ ] ( ) 02
0

2 =++ tTtTtT t ωω α
αD&&                      (11) 

 Both differential equations can be solved independently. These are connected 
only with coupled characteristic constants 2

0
22

0 ck=ω .  The first differential equation 
(10), can be, in some cases, solved for characteristically specified function of variation 
of cross section of the rod. As it was solved in Refs. [4, 6, 7, 65, 66], for different 
cases of functions of variation of cross section, in following, we will recall the 
outcomes from that paper. 
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3  TRANSVERSAL CREEP VIBRATIONS OF A FRACTIONAL DERIVATIVE 
ORDER CONSTITUTIVE RELATION HOMOGENEOUS BEAM  

 
 For line element of beam creep material, constitutive stress-strain state 

relation is expressed by fractional order derivative constitutive relation in the form (1),  
( )tyzz ,,σ  is normal stress in the point of cross section of the line element, at 

distance   from the left beam end, and at point with distance   from neutral axis – 
bending beam axis, ( )tz,ϕ   turn angle of beam cross section for pure bending, 

( ) ( )
z

tzytyzz ∂
∂

=
,,, ϕε   is dilatation of the line element [69].  
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( )0,0 zN

( )yzN ,

 
 

Figure 2. Stress in the beam cross section 
 

The beam transversal displacement is ( )tzv , , and constitutive relation of the 

bending couple ( )tzf ,M  is in the following form: 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡+=

z
tz

z
tztz txxf ∂

∂ϕ
∂

∂ϕ α
α

,,, 0 DBBM        (12) 

where xx IE00 =B  is bending rigidity and xx IEαα =B , fractional bending rigidity 
of the beam: 

 Partial-fractional order differential equation of the beam transversal vibrations 
with respect to the transversal displacement ( )tzv ,  of the beam cross section with 
distance z  from left beam end at the moment t is in the following form: 

 ( ) ( ) ( )
−

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
++ 4

4
2

4

4
2
02

2 ,,,
z
zvc

z
tzvc

t
tzv

txx ∂
τ∂

∂
∂

∂
∂ α

α D    

  - ( ) ( )
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+ 22

4

22

4

0
2 ,,

G
1

zt
tzvE

zt
tzvEi tx ∂∂

∂
∂∂

∂κ α
αD  
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( ) ( ) ( ) ( ) 0,,,F,,
G
E

22

4
2

4

4
02 =⎥⎦

⎤
⎢⎣
⎡ Ξ′+−+

z
tzvtz

ztz
zvi

t
tzvi Nxx ∂

∂
∂
∂

∂∂
τ∂

∂
∂κ       (13) 

in which we denoted the following: 

A
c x

x ρ
02

0
B

= ;
A

c x
x ρ

α
α

B
=2 ;

G
Ei

GA x
x 020 κρκ

ρ
=

B ;
G
Ei

GA x
x αα κρκ

ρ
2=

B ; 

( ) ( )tzF
A

tzF NN ,,1,,' Ξ=Ξ
ρ

         (14) 

Newly derived partial-fractional order differential equation of the beam 
transversal vibrations (4) is an extended and generalized equation of transversal 
vibrations of the beam with members of the creep material properties influence, and 
the influence of rotation inertia and shear of transversal force. The last member in (13) 
represents influence of an external force coaxial with beam axis. 

From equation (13), we exclude members which contain shear coefficient κ  
which are in relation to the beam cross section shear under the influence of transversal 
force, and we suppose that axial forces are equal to zero, and we solve the following 
equation: 

( ) ( ) ( ) ( ) 0,,,,
22

4
2

4

4
2

4

4
2
02

2

=−
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
++

tz
zvi

z
zvc

z
tzvc

t
tzv

xtxx ∂∂
τ∂

∂
τ∂

∂
∂

∂
∂ α

α D  (13*) 

By using Bernoulli’s method for solution obtaining, and for solution of partial 
fractional-differential equation (13*), we can write a product of the two functions 
depending on separate coordinate z  and time t  in the following form: 
 ( ) ( ) ( )tztzv TZ, =            (14) 

and by introducing the following constants-own beam kinetic parameters 2
0xω  and 

2
xαω , which are in the following relations: 

A
02

0
2

0 ρ
ω x

xx kck B
== , and 

A
22

ρ
ω α

αα
x

xx kck B
== , with unknown beam transversal vibrations own number 

k , previous equation (4*) is decomposed to the two equation, one differential with 
respect to orthogonal normal function ( )zZ  of coordinate z , and second time 

function  ( )tT  of time t : 

( ) ( ) ( ) 0ZZZ 442 =−′′+ zkzkiz x
IV                               (15) 

( ) ( )[ ] ( ) 0TtTT 2
0

2 =++ tt xx ωω α
α tD&&  
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3. 1*   Transversal creep vibrations of a fractional derivative  order constitutive 
relation of non homogeneous beam 
 

We introduce that material of a one layer beam is a creeping material. 
Parameters of the beam creep material are: α  is proper material constant of the 
characteristic creep law of material, 0E  and αE  are modulus of elasticity and 
creeping properties of material. 

By using stress-strain relation (1) from cited references, a single-axis stress 
state of the creep hereditary type material is described by fractional order time 
derivative differential relation in the form of three parameter model. For line element 
of beam creep material, constitutive stress-strain state relation is expressed by 
fractional derivative constitutive relation in the following form: 

 ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡+=

z
tzE

z
tzEytyzz ∂

∂ϕ
∂

∂ϕσ α
α

,,,, 0 tD       (16) 

where  [ ]•α
tD is notation of the fractional derivative operator defined by expression 

(2). ( )tyzz ,,σ  is normal stress in the point of cross section of the line element, at 
distance z  from the left beam end, and at point with distance y  from neutral axis – 
bending beam axis, ( )tz,ϕ  turn angle of beam cross section for pure bending, 

( ) ( )
z

tzytyzz ∂
∂

=
,,, ϕε  is dilatation of the line element. 

In formulation of the problem of stochastic stability of non homogenous creep 
bars of a fractional derivative order constitutive relation of material is assumed to be 
continuous function of length coordinate. Let consider the problem on transversal 
oscillations of two layer straight bar, which is under the action of the length-wise 
random forces. The excitation processes is a bounded noise excitation. 
It is assumed, that layers of the bar were made of creep continuously non homogenous 
material and the corresponding modulus of elasticity and creep fractional derivative 
order constitutive relation of the each layer are continuous function of length 
coordinate and thickness coordinates and changes under the following laws: 

( ) ( ) ( )yfzfEyzE eee
)11()1()1(

0
)1( , = ,   ( ) ( ) ( )yfzfEyzE eee

)22()2()2(
0

)2( , =  

( ) ( ) ( )yfzfEyzE )11()1()1(
0

)1( , αααα = ,   ( ) ( ) ( )yfzfEyzE )22()2()2(
0

)2( , αααα =
 l≤≤ z0 ;     21 hyh ≤≤−  10 ≤≤α                (17) 

At this case connection between increments of stresses and deformations in 
each layer represented in a view: 

[ ])1()1()1()1()1(
ztzez EE εεσ α

α ∆+∆=∆ D  01 ≤≤− yh                (18) 
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[ ])2()2()2()2()2(
ztzez EE εεσ α

α ∆+∆=∆ D       −≤≤ 20 hy  

Here 1h   and   2h  are thicknesses of the corresponding layers. 

 Dilatations are: 

 
( )
z

tzyz ∂
∂

=
,ϕε    and     

( )
z

tzyz ∂
∆∂

=∆
,ϕε     (19) 

where ( )tz,ϕ  is angle of pure bending. normal stress of pure bending is: 

( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂

∂
=

z
tzdyyfzfE

z
tzdyyfzfEd teez

,)(,)( )11()1()1(
0

)11()1()1(
0

)1( ϕϕσ α
ααα D  (20) 

01 ≤≤− yh  

( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂

∂
=

z
tzdyyfzfE

z
tzdyyfzfEd teez

,)(,)( )22()2()2(
0

)22()2()2(
0

)2( ϕϕσ α
ααα D  (20*) 

−≤≤ 20 hy  

From the dynamic equilibrium conditions we can write: 

 ∑
=

=
N

i
iF

1
0

r
   and   ii F

fxfx

N

i

F MM
rr rrr

M==∑
=1

0  

or 

0
"

)2(

"

)1( =+ ∫∫∫∫
A

z
A

z dxdydxdy σσ  

0
"

)2(

"

)1( ≅+ ∫∫∫∫
A

z
A

z xdxdyxdxdy σσ  

fx
A

z
A

z ydxdyydxdy M=+ ∫∫∫∫
"

)2(

"

)1( σσ                      (21) 

If we introduce following notations: 

 ∫
−

=
0

)11())(1(

1

)(
h

nn dyyyfa αα , ∫=
2

0

)22())(2( )(
h

nn dyyyfa αα , 2,1,0=n        (22) 

previous equilibrium conditions we can write in the following relations: and 
expression: 
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( ) ( ) 0)2()2(
0

)1)(2()1()1(
0

)1)(1( =− zfEazfEa eeee ⇒ ( ) ( ) )1)(2(

)1)(1(

)2(
0

)1(
0)1()2(

e

e
ee a

a
E
Ezfzf =   (23) 

( ) ( ) 0)2()2(
0

)1)(2()1()1(
0

)1)(1( =− zfEazfEa αααααα ⇒ ( ) ( ) )1)(2(

)1)(1(

)2(
0

)1(
0)1()2(

α

α

α

α
αα a

a
E
Ezfzf =   (24) 

and following expression for bending moment: 

      
( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }zfaEzfaE
z

tzb

zfaEzfaE
z

tzbtz

t

eeeefx

)2()2)(2()2(
0

)1()2)(1()1(
0

)2()2)(2()2(
0

)1()2)(1()1(
0
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or with respect to the previous relations (22), (23) and (24) we can write in the 
following form: 
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We take into account the rotatory inertia of cross section and we can write the 
following equations of bar dynamics: 
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If we introduce: 
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)2(

2
)(

1 x
1
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we can write: 
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 ` ( ) ( ) ( )
z

tzF
t

tzvAA T

∂
∂

=+
,,

2

2

2211 ∂
∂ρρ     (31) 

After applying derivative with respect to time we obtain the following partial-
fractional differential equation: 
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By introducing following notations: 
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we obtain the following partial-fractional differential equation of transversal vibrations 
of creep of two layer straight bar, which is under the action of the length-wise random 
forces: 
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We study a special case: From equation (34), we exclude members which 
contain axial forces and we solve the following equation: 
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where 
( ) ( ) ( )zfzfzfe == )1()1(

α         (36) 
By using Bernoulli’s method for solution obtaining, and for solution of a partial 
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fractional-differential equation (35), we can write a product of the two functions 
depending on separate coordinate z  and time t  in the following form: 

( ) ( ) ( )tTzZtzv =,        (37) 
By introducing this solution into equation (37) we obtain two equations: 
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3. 2* The time function solution of a fractional order differential equations 

 
The second, fractional-differential equation from all three considered cases is 

mathematically same fractional-differential equation with unknown time-function ( )tT  
and  we can rewrite it  in the following form: 
 ( ) ( )( ) ( ) 02

0
2 =++ tTtTtT ωω α
α

&&           (44) 
This fractional-differential equation (40) on unknown time-function ( )tT ,  can 

be solved applying Laplace transforms (see Ref. [8], [9], [6], [18]  and [15]). Upon 
that fact Laplace transform of solution is in the form: 
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where  ( )[ ][ ] ( ) ( )[ ]tTLL ptTt R=αD  is Laplace transform of a fractional derivative 

( )
α

α

dt
tTd

for 10 ≤≤α . For creep rheological material those Laplace transforms the 

form: 
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where the initial value are: 
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tdt
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       (42*) 

so, in that case Laplace transform of time-function is given by following expression: 
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For boundary cases, when material parameters α  take following values: 

0=α  i 1=α  we have two special simple cases, whose corresponding fractional-
differential equations and solutions are known. In these cases fractional-differential 
equations are: 
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where ( )( ) ( )tTtT &=1 . 
The solutions to equations (44) and (45) are: 
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for  1=α  and for  2
10 2

1ωω > . (for  soft creep) or for strong creep: 
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for  1=α  and for 2
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1ωω < . 

For kritical case: 
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Fractional-differential equation (40) for the general case, when α  is real 
number from interval 10 <<α   can be solved by using Laplace's transformation. By 
using that is: 
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and by introducing  initial conditions of fractional derivatives in the form (42*), and 
after taking Laplace's transform of the equation (40) we obtain the Laplace transform 
of solution in the form (41). 
By analyzing previous Laplace transform (50) of solution we can conclude that we can 
consider two cases. 

For the case when 02
0 ≠ω  , the Laplace transform solution can be developed 

into series by following way: 
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In writing (53) it is assumed that expansion leads to convergent series [9]. The 

inverse Laplace transform of previous Laplace transform of solution (53) in term-by-
term steps is based on known theorem, and yield the following solution of differential 
equation (40) of time function in the following form of time series: 
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or 
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Two special cases of the solution for  02
0 =ω  are: 
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Figure 3. Numerical simulations and graphical presentation of the results. Time 
functions ( )α,tT  surface for the different beam transversal vibrations kinetic and 

creep material parameters: 
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Figure 4. Numerical simulations and graphical presentation of the results. Time 
functions ( )α,tT  surface and curves families  for the different beam transversal 
vibrations kinetic and discrete values of the creep material parameters 10 ≤≤α : 
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In Figure 3. numerical simulations and graphical presentation of the solution of 
the fractional-differential equation of the system (27*) are presented. Time functions 
( )α,tT  surfaces for the different beam transversal vibrations kinetic and creep material 

parameters in the space ( )( )αα ,,, ttT for interval 10 ≤≤α are visible: 
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4 PARTIAL FRACTIONAL ORDER DIFFERENCIAL EQUATIONS OF 
CREEPING AND VIBRATIONS OF PLATE 
 
4. 1* Basic suppositions (presumptions) of the cinematic deformation of a platE. 
 

Let’s introduce (suppose) that plate is thin and that there is  no depalanation of 
cross sections in conditions of creep material. Also, we suppose  that cross sections are 
always orthogonal with respect to the middle plane of the plate. If a thin plate is creep 
bent with small deflection, i.e., when the deflection of the middle surface is small 
compared to the thickness h , the following assumption can be made:  

1* The normal to middle surface before creep bending are deformed into 
normals of the middle surface after bending.  

2* The stress zσ  is small compared with the other stress components and may 
be neglected in the stress strain relations. 3* The middle surface remains unstrained 
after bending. 

On the basis of the previous, we suppose that displacements ( )tzyxu ,,,  and 

( )tzyxv ,,,  of the point ( )zyxN ,,  in the direction of the coordinate axes x  and 
y are possible to express in the function of its distance z  from plate middle surface 

and its transversal displacement ( )tyxw ,,  in direction of the axis z , and also same 

displacement of the corresponding point ( )0,,0 yxN  in the plate middle surface. By 
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using method from Ref. [78,79] (see D. Rašković), we can write the expression for 
displacement of the plate point ( )zyxN ,,  in the following form: 

x
wzzztgu
∂
∂

−=−≈−= αα  

y
wzzztgv
∂
∂

−=−≈−= ββ      (58) 

Curvatures of the plate are: 
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where xR  and yR are main radia of curvatures. First (flexural) curvatures of the plate 

middle surface at the point ( )0,, yxN  are: 
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Semi sum of first (flexural) curvatures of the plate middle surface at the point 
( )0,, yxN  is middle curvature of the plate and is independent of  orthogonal 

coordinates directions in this  point.  
yx

w
∂∂

∂ 2

  is second curvature or torsion of the 

deformed plate middle surface, and we can express in the following form: 
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Components of the tensor relative deformations at the plate point ( )zyxN ,,  
are: 
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4. 2*  Constitutive relations of the stress and strain state of the plate stressed 
creep material. 

 
Let’s introduce the supposition that relations between stresses and strains, in 

the plate stressed and strained material with creeping properties, are the following 
relations: 
 ( ) ( )[ ]tt x

xx
x
xxx εεσ α

α
x

tDEE += 0  

 ( ) ( )[ ]tt y
yy

y
yyy εεσ α

α
y

tDEE += 0  

 ( ) ( )[ ]tt xytxyxy
xy γγτ α

αDGG += 0     (63) 
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Figure 5. a* Thin plate with geometrical parameters.  b*  Plate cross section. c*  Plate 
element with area dxdy  in the middle plate surface and with presentation of the 
unique height in cross section  and corresponding stress tensor components in the plate 
cross sections. 
 
 
where  [ ]∗y

tDα
 differential operator with fractional order derivative defined by (2) 

and by  material parameter α , which satisfy the following condition: 10 <<α . In 
the previous relations  x0E , y0E , xαE , yαE  are  the elasticity coefficients of loading 

plate material, momentous and prolongeous one in the corresponding axes directions 
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x  and y ; xα , yα  and xyα  are corresponding coefficient of the creep of plate 

material for axial and shearing loads; and ( )µ+=
12

0EG0       and ( )µ
α

α +
=

12
EG   

are corresponding shear modulus. 
On the basis of  previous suppositions and relations we can write constitutive 

stress-strain relations. Now, into the previous equations – relation between stress 
components and strain components, we introduce the expression of strain tensor 
components expressed by transversal displacements ( )tyxw ,,  of the plate middle 

surface corresponding point ( )0,, yxN  and coordinate z  of the corresponding plate 

point ( )zyxN ,, . Than we obtain the following relations between stress components 

and transversal displacement ( )tyxw ,, . For homogeneous and isotropic material with 

parameters of material creep properties are equal ααα == yx ; also, coefficients of 

rigidity of momentaneous and prolongeous one are: 000x EEE == y  and 

ααα EEE x == y in all directions at corresponding point. For that case previous 

expressions are simplest and in the following form: 
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Figure 6.  a* Plate element with area dxdy  in the middle plate surface and 
with presentation of the unique height in cross section  and corresponding sheering 
stress components in z  direction as well as the corresponding transversal forces. 
b* Plate element with area dxdy  in the middle plate surface and with presentation of 
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the unique height in cross section  and corresponding bending moments and moments 
of torsion. 
 
 

When equilibrium conditions of the forces applied to the plate are satisfying, 
than it is necessary that Navier’s equations of the equilibrium of every part of 
deformable body be satisfied.  By using previous derived expressions of stress state 
tensor components xσ , yσ  and xyτ  and introducing into Navier’s equations of the 
equilibrium of every part of deformable body we obtain stress state tensor unknown 
components xzτ , yzτ  and zσ : 
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4. 3*  Partial fractional order differential equation of the deformable plate middle 
surface. 

 

By using boundary equilibrium condition, that the normal stress component 
zσ  for the upper plate surface is equal to the external normal surface loading 

( )tzyxp ,,, , we can write the following: 

 ( ) ( )[ ]{ } ( )
0

,,,,,,
D

Dt

ghtyxptyxwtyxw ρκ α
α

−
=∆∆+∆∆        (66) 

where for cylindrical flexural rigidity 0D  and αD , momenteneous and 
prolongeneous one, of the loading processes to the plate material with creeping 
properties, as well as ακ  as ratio of these rigidities, are introduced in the following 
forms 

 ( )2
0

0 112 µ−
=

E
D ,          ( )2112 µ

α
α −
=

E
D ,         

00 E
Eαα

ακ ==
D
D

    .(67) 

Relation between external plate surface excitation ( )tyxp ,, , and external 

volume excitation ghρ  and transversal displacement ( )tyxw ,,  of the middle surface 
point ( )yxN ,  is in the form of partial fractional order differential equation (66). 
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Previous partial fractional order -differential equation is equation of the transversal 
displacement ( )tyxw ,,  of the middle surface point ( )yxN ,  loaded by external plate 

surface transversal excitation ( )tyxp ,, and external volume excitation ghρ . 
We conclude that for obtaining the last previous partial fractional order differential 
equation is equation of the transversal displacement ( )tyxw ,,  of the middle surface 

point ( )yxN ,  loaded by external plate surface transversal excitation ( )tyxp ,, and 
external volume excitation ghρ , it is using an idea of Sophie Germain (1815) 
submitted by memoare to Paris academy of sciences, and corrected by Lagrange. 
 
4. 4* Equation of quazi-statical equilibrium of a creep plate, and equation of 
transversal oscillations of a creep plate excited by external forces in the plate 
middle surface. Combined bending and stretching of rectangular plate. 
 

In the previous consideration, the plate is assumed to bend with small 
deflection by lateral (transversal) loads only. If there are forces acting in the middle 
surface of the plate  in addition to the lateral loads, the previous governed partial 
fractional differential equation must be modified to take into account the effects of 
these in-surface forces. 

In general case of an elementary block with edges dx  and dy , depth h , 

excited by external transversal surface forces ( )dxdytyxp ,, , and forces 'X  , 'Y  

and '' yx XY =  in the plate middle surface, is excited by surface forces caused by 

appearing of stresses, and their equivalent action as bending moments, moments of 
torsion and transversal forces. Also we can calculate the change of these surface 
forces, and moments caused by changing of the coordinates form x  and y  to the 

dxx +  and dyy + . Also we must calculate change of the normal direction of the 
cross section surface. 

Аso, we must keep in mind that external forces components 'X  and 'Y  are 
applied in the plate middle surface in the cross section with coordinates x  and y , and 

in cross sections with coordinates the dxx +  and dyy +  are: dydx
x
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X

X  and dydx
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x ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
'' YY  . We also, must 

keep in consideration that the parallel edges AB and CD  are deformed on the 
distance dy , and that corresponding forces take with axis z  the following angles β  

and dy
y∂

∂
+

ββ . Also, the parallel edges AC and BD  are deformed on the distance 
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dx , and that corresponding forces take with axis z  the following angles α  and 

dx
x∂

∂
+

αα . 

By introducing all these elements, we can write equations of forces 
equilibrium acted to the elementary block with edges dx  and dy , depth h  in the 
following forms: 
 a*  from the condition of the equilibrium into x0  direction; 
 b* from the condition of the equilibrium into y0  direction. 

c* from the condition of the equilibrium into z0  direction, and  we obtain 
final form of the transversal oscillations partial fractional order differential equation of 
the thin plate of the creep material: 
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              (68) 
This equation is derived applying prepositions that proper weight of plate is neglected, 
and that depth of the plate is small. 
 
4. 5* The basic partial fractional order differential equation and solution of the 
free plate creep oscillations. 
 

By introducing notation ( )2

3
004

0 112 µρρ −
==

h
h

h
c ED

, and by using derived 

equations, we can obtain the partial fractional differential equation of the free plate 
transversal oscillations in the following form 

 
( ) ( ) ( )[ ]{ } 0,,1,, 4

02

2

=∆∆++
∂

∂ tyxwc
t

tyxw α
ακ tD         (69) 

Solution of the previous fractional derivative-partial-differential equation can 
be looked for by using Bernoulli’s method of particular integrals in the form of 
multiplication of two functions, from which the first ( )yx,W  depends only on space 
coordinates  x  and y , and the second is time function ( )tT : 

 ( ) ( ) ( )tyxtyxw Τ= ,,, W          (70) 
Assumed solution (70) is introduced in previous equation (69)  and by 

introducing the notation of the constants: 
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is easy to share previous equation on following two. 
 *first,  a four order partial differential equation on unknown  eigen function 

( )yx,W  of space coordinates x  and y in the form:: 

 ( ) ( ) 0,, 4 =−∆∆ yxkyx WW         (72) 
or in the form of two second order differential equations: 
 ( ) ( ) 0,, 2 =±∆ yxkyx WW           (73) 

and  * second, fractional-differential equation on unknown time-function ( )tT : 

 ( ) ( ) ( )[ ] 012
0 =++ tt t TT α

ακω D&&      (74) 
 
4. 6* Space coordinates' eigen amplitude function and time function for the creep 
vibrations of the plate. 
 

Let’s consider that space coordinate proper function ( )yx,W  is in the form 

of ( ) ( ) ( )yxyx YXW =,  , and then we can write: 

 ( ) ( ) ( ) 022 =±±+′′ xknx XX  ( ) ( ) 02 =′′ yny YY m        (75) 
If plate is rectangular, and when we take into consideration a solution in Descartes’ 
coordinates with free ends along contours then 
( ) Chmxshmxmxmxx ;;cos;sin:=X , where 222 knm ±±= , and 

corresponding ( ) Chnyshnynynyy ;;cos;sin:=Y . 
If plate is in the circular form, then it is suitable to use polar-cylindrical 

coordinate system, and then the set of the partial differential equations in the space 
cylindrical-polar coordinates r , ϕ  and z is: 

 ( ) ( ) 0,, 2 =±∆ ϕϕ rkr WW , 

( ) ( ) 0,,11 2
2

2

22

2

=±⎟⎟
⎠
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⎛
∂
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∂
∂ ϕϕ

ϕ
rkr

rrrr
WW        (76) 

Solutions of the previous equations we write in the form 
( ) ( ) ( )rr RW ϕϕ Φ=,  and after applying this solution we obtain the following 

system of ordinary differential equations: 
 ( ) ( ) 02 =Φ±Φ ′′ ϕϕ n   

 ( ) ( ) ( ) 01
2

2
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±+′+′′ r

r
nkr

r
r RRR m      (77) 

Second equation from previous system has particular solutions in the form of 
Neuman’s and Bessel’s functions, but Neuman’s functions for 0=r  have infinite 
value, than particular solutions of this defined task (problem) are only Bessel’s 
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function first kind with real argument ( )xnJ  as well as with imaginary arguments 

( )xnI , where krx = . Modified Bessel’s function first kind with imaginary 

arguments ( )xnI , with order n  is in the following form: 

 ( ) ( ) ( ) ( )
∫
+

−

−− −
==

π

ππ
ntdteixix tx

n

n
n

n cos
2
1 cosJI        (78) 

If n  is integer number, than this function satisfies the following differential 
equation: 
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By using previous considerations and study of equations (?) for their solutions 
in the polar coordinates for the circular plate, we can write the following expressions: 

 ( ) ( )nnn nC 0sin ϕϕϕ +=Φ          (80) 

 ( ) ( ) ( )rkKrkr nmnnmnmnnm IJR +=         (81) 
General solution for the transversal plate middle surface point displacement is in the 
following form: 
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where time functions  ( )tnmT  are in the form of series: 

( ) ( ) ( )

( ) ( )∑∑

∑∑
=

=

−−
−

∞

=

=

=

−∞

=

−+Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−+Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

ij

j
j

nm

jj
nmi

i

i
nm

i
nm

ij

j
j

nm

jj
nmi

i

i
nm

i
nmnm

ji
t

j
i

t

ji
t

j
i

tt

0
2
0

2
12

0

2
0

0
2
0

2
2

0

2
0

22
1

12
1

αω
ωω

αω
ωω

α
α

α

α
α

α

T

TT

&

      (83) 

where we introduce the following notations: 
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0
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D

      (84) 

and       
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0
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0 132 µρρ
κκωω αα
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h
kck nmnmnmnmnm

D
.       (85) 

Time functions  ( )tnmT  are defined as a solution of the corresponding ordinary 
fractional differential equation defined by (11) or (74). 
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4. 7* Solution of the partial fractional differential equation of the free rectangular 
plate oscillations with the hinged edges on the plate contour. 
 

Let’s, now, study free oscillations of a rectangular plate with basic edges a  
and b , and with  hinged edges on the middle surface plate contour – simply supported 
plate. Boundary conditions of this rectangular plate are that transversal displacements 
on the middle surface plate contour points equal zero, and also in same points the 
bending moments are equal to zero. By these basic conclusions, boundary conditions 
are expressed in the following forms: 
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Partial differential equation (72) with accomplished boundary conditions (86) 
are satisfied by the following solution: 
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Solution of the transversal middle surface plate point displacements for free 
vibrations of the rectangular plate with creep properties of material, hinged on the 
contour is in the form:  

( ) ( ) y
b

nx
a

mttyxw
m n

mn
ππ sinsin,,

1 1
∑∑
∞

=

∞

=

= T         (89) 

where time function  ( )tnmT  in the form (83).  Than finally we  obtain: 
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    (90) 

where mn0T  and  mn0T&  are integral constants defined by initial conditions. 
 
 
 
 
4. 8* . Numerical experiments and results. 
 

By using the expression obtained for time function ( )tnmT  with 
corresponding particular solutions, we made numerical experiment for characteristic 
cases and ratios of plate parameters, coefficient α  of creeping material and results are 
presented in the following Figures.  

In Figure 3. numerical simulations and graphical presentation of the solution 
(85) of the fractional-differential equation (64) of the system are presented, in analogy 
with corresponding for transversal vibrations of the beam. Time functions ( )α,tT  
surfaces for different plate  transversal vibrations kinetic and creep material parameters 

in the space ( )( )αα ,,, ttT for interval 10 ≤≤α are visible: in a* for 1
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

x

ω
ωα ;  in  b* 

for 
4
1

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

x

ω
ωα ; in  c* for 

3
1

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

x

ω
ωα ; in  d* for 3

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

x

ω
ωα . 

In Figure 4. the time functions ( )α,tT  surfaces and curves families  for the 
different plate transversal  vibrations kinetic and discrete values of the creep material 
parameters  10 ≤≤α are presented, in analogy with corresponding for transversal 
vibrations of the beam.  In Figures a* and c* for 1

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x

x

ω
ωα ; in Figures  b* and d* for 
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4
1
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=⎟⎟
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⎝

⎛

x

x

ω
ωα ; in Figure  e*  for 

3
1

0

=⎟⎟
⎠

⎞
⎜⎜
⎝
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x

x

ω
ωα ; and in Figure  f* for 3
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x

x

ω
ωα . 

In this paper, new theory of the deformation and oscillations of thin creeping 
material plate for small deformation is presented. Creeping properties of a material 
plate are presented by using constitutive relations in the fractional differential form 
with terms by fractional order derivative with respect to time. By using presented 
assumptions and pointed out theory, the partial fractional differential equations of the 
quazi-static equilibrium of plate, and transversal oscillations are derived, and solved 
for different deformation as well as oscillations creeping state are obtained, for 
different boundary plate conditions. 

Also, the expressions of the stress tensor components distributions in the plate 
of the creeping properties material are derived. The expressions of the bending and 
twisting moments and transversal force are derived.  

 From the obtained analytical and numerical results for free transversal creep 
vibrations of a fractional derivative order hereditary homogeneous thin plate, it can be 
seen that a fractional derivative order hereditary properties in all cases are convenient 
for changing time function depending on material creep parameters, and that 
fundamental eigen-function depending on space coordinates is dependent only on 
boundary conditions and geometrical properties of plate. 
 
 
 
5. DOUBLE PLATE SYSTEM 
 
5. 1* Theoretical problem formulation and governing equations. 
 

Let us suppose that both plates in double plate systems satisfy same 
conditions as the plate considered  in the previous paragraph ИII and listed in the 
beginning of the sub-paragraph  4.1*. 

Now, let us consider two isotropic, creeping, thin plates, with thickness ih , 

2,1=i , modulus of elasticity iE  and ∂iE , Poisson’s ratio iµ  and shear modulus iG , 
plate mass distribution iρ . The plates are of constant thickness in the z -direction (see 
Fig. 7). The contours of the both plates are parallel and same type of the boundary 
conditions. Plate is interconnected by a creeping layer with the fractional order 
derivative constitutive relation type with constant surface stiffness. This creep-layer 
connected double plate system is of composite structure type, or sandwich plates, or 
layered plates. 

The origins of the two coordinate systems are two corresponding sets at the 
corresponding centres of the no deformed plates middle surfaces as shown in Fig. 7. 
and with parallel corresponding axes. The both plates may be subjected to either 
transversal distributed external loads ( )tyxqi ,, , 2,1=i  along corresponding plates 
external boundary (contour) surfaces parallel to the corresponding plate middle 
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surface. The problem at hand is to determine solutions. 
The use of Love-Kirchhoff approximation make classical plate theory 

essentially a two dimensional phenomenon, in which the normal and transverse forces 
and bending and twisting moments on plate cross sections (see Ref. [88, 89] books by  
Rašković (1965) and (1985)) can be found in terms of displacement ( )tyxwi ,, , 2,1=i  
of the middle surface points, which is assumed to be a function of two coordinates, x  
and y  and time t ., as it is considered for one plate in the previous chapter 4. 

The plates are assumed to be with same contour forms and boundary 
conditions. 

Let us suppose that the plate middle surfaces are planes in an underformed 
state system. If the plates transverse deflections ( )tyxwi ,, , 2,1=i  are small (in the 
sense, as has been discussed in Refs. [88, 89] books by Rašković (1965) and (1985), 
small compared to the plates thickness, ih , 2,1=i , ) and that plates vibrations occur 

only in the vertical direction. Let us denote with ( )2

3

112 µ−
=

hi
i

E
D , ( )2

3

112 µ
α

α
−

=
hi

i
E

D , 2,1=i  

the corresponding bending cylindrical rigidity of creep plates, analogous as in the 
previous paragraph VII. For homogeneous and isotropic plates material the parameters 
of material creep properties are equal in all directions, i.e. ααα == yx ; also, 
coefficients of rigidity of momentaneous and prolongeous one are: 000x EEE == y  and 

ααα EEE x == y  in all directions at corresponding point.. The coefficients of rigidity of 
momentaneous and prologues one for creep layer are c  and αc , and the parameter of 
layer material creep properties is 10 ≤≤α . 

Now, by using results from References [38, 57] by (Stevanović) Hedrih 
(2003), the relation between stress components and strain components are expressed 
by transversal displacements ( )tyxw ,,  of the plate middle surface corresponding point 
( )0,, yxN  and coordinate z  of the corresponding plate point ( )zyxN ,, . Than we can 

write the following relations between stress components and transversal displacement 
( )tyxw ,,  in the form (64) and (65). 

 

1h

2h

a  

b

x  

h

y
h

αα ,,cc  

( )tyxq ,,1 ( )tyxw ,,1

( )tyxw ,,2

αα ,,cc  

αα ,,0 EE  

αα ,,0 EE   
Figure 7. A creeping connected double plate system 
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By using results of (Stevanović) Hedrih (2003, 2004, 2004a), as well as 
results from previous paragraph III. the governing partial fractional order differential 
equations of the creep connected double plate system dynamics are formulated in 
terms of two unknowns: the transversal displacement ( )tyxwi ,, , 2,1=i  in direction of 
the axis z , of the upper plate middle surface and of the lower plate middle surface 
(Fig. 7). The system of these two coupled partial fractional order differential equations 
are derived by using d’Alembert’s principle of dynamical equilibrium. These partial 
differential equations of the creeping connected double plate system are in the 
following forms: 

( )
( ) ( ) ( )( )[ ]{ }

( ) ( ) ( ) ( )[ ]{ } ( )tyxqtyxwtyxwa

tyxwc
t

tyxw

c ,,~,,,,1

,,1,,

112
2
1

1
4
12

1
2

=−+−

−∆∆++
∂

∂

α
α

α
α

κ

κ

t

t

D

D
 

            (91) 
( )

( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]{ } ( )tyxqtyxwtyxwa
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tyxw

c ,,~,,,,1
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where:  
( ) ( )2

3
04

112 µρρ −
==

ii

i

ii

i
i h

h
h

c ED ,   
0E

Eα
ακ = ,  

c
cc α

ακ = ,  ( )
ii

i h
ca

ρ
=2 , 

( ) ( )
ii

i
i h

tyxqtyxq
ρ

,,,,~ =  2,1=i . 

 
5. 2*  Solution of the governing equations. 
 

Solution of the previous partial fractional order differential equations (91) can 
be presumed for the Bernoulli’s method of particular integrals in the form of 
multiplication of two functions (see books [78, 79] by Rašković (1965) and (1985), 
and previous paragraph VII), the first of which ( )( )yxi ,W , 2,1=i  depends only on 
space coordinates  x  and y , and the second is a time function ( )( )tT i

, 2,1=i : 

( )( ) ( )( ) ( )( )tyxtyxw iii Τ= ,,, W  , 2,1=i                    (92) 

For the beginning, the assumed solution (92) is introduced in previous system 
of partial fractional order differential equations (91) for the case of free vibrations, 
when external surface excitation  ( ) 0,, =tyxqi , 2,1=i  equal zero and we obtain the 
following: 
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After analysis of the previously obtained system of equations, we can write 
the corresponding systems of the basic decoupled system equations in the following 
forms: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) 0T~1T 11
2
11 =++ tt α

ακω tD&&  

 ( ) ( ) ( ) ( )( ) ( ) ( ) 0T~1T 221
2
22 =++ tt α

ακω tD&&          (94) 

where ( ) ( ) ( ) ( )
2442
iiii ack +=ω ;  

( )
( ) ( ) ( )

( ) ( ) ( )
2
1

2
1

2

22
1

4
~

ack
ack

i

c
ii

i +
+

= αα
α

κκ
κ . 

a* If plates are rectangular, then we can take into consideration a system in 
Descartes’ coordinates: 

 ( ) ( ) ( ) ( )( ) 0,W,W 1
4
11 =−∆∆ yxkyx , ( ) ( ) ( ) ( )yxyx ,, 21 WW = ,        (95) 

b* If plates are in the circular form, then it is suitable to use polar-cylindrical 
coordinate system, and then the set of the partial differential equations ( ) ( )ϕ,riW , 

2,1=i  in the space of cylindrical-polar coordinates r , ϕ  and z is: 

 ( ) ( ) ( ) ( ) ( ) 0,W,W 1
4
11 =−∆∆ ϕϕ rkr , ( ) ( ) ( ) ( )ϕϕ ,, 21 rr WW =         (96) 

 ( ) ( ) ( ) ( )
2
1

4
1

4
1

2
1 ack +=ω  , ( ) ( ) ( ) ( )

2
2

4
2

4
2

2
2 ack +=ω  

where there are introduced the notation of the system own parameters. 

 ( ) ( ) ( )
2442
iii ack +=ω          and      ( ) ( ) ( ) ( ) ( ) ( )

c
iiiiii ack αααα κκωκω 24422 ~ +==   (97) 

The solutions of partial differential equations  (95) and (96) are known from 
classical literature (see books by Rašković (1965), and in the previous paragraph 
VII.6* and VII. 7*), and are eigen amplitude plate functions defined shape of 
amplitude plate displacements for corresponding eigen circular free vibrations. These 
eigen amplitude functions satisfy boundary conditions, and also orthogonality 
conditions. For the corresponding boundary conditions, the space coordinate own 
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amplitude functions we denote with ( ) ( )yxnmi ,W , 2,1=i , ∞= ,....4,3,2,1,mn  and  we can 
write the following conditions of orthogonality: 

 ( ) ( ) ( ) ( )∫ ∫
⎩
⎨
⎧

=
≠

=
a b

mnnm
srimni srnmv

srnm
dxdyyxyx

0 0

0
,W,W ,         (98) 

2,1=i , ∞= ,....4,3,2,1,mn , ∞= ,....4,3,2,1, rs  

which is easily derived by using a system of equations (95) or (96) for different pairs 
nm  and  sr . Also, the time functions  ( ) ( )tnmiT , 2,1=i , ∞= ,....4,3,2,1,mn  are expressed 
in the form of series similar as in the previous paragraph expressed by formula (67). 
Then, we can write: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( )∑∑

∑∑
=

=

−−
−

∞

=

=

=

−∞

=

−+Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−+Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

ij

j
j
nmi

jj
nmii

i

i
nmi

i
nmi

ij

j
j
nmi

jj
nmiii

i

i
nmi

i
nminmi

ji
t

j
i

t

ji
t

j
i

tt

0
2

2
12

0

2
0

0
2

2
2

0

2
0

22
1

12
1

αω
ω

ω

αω
ω

ω

α
α

α

α
α

α

T

TT

&

 (99) 

 2,1=i , ∞= ,....4,3,2,1,mn       

where the following notations: 

 ( ) ( ) ( )
2442
iinmnmi ack +=ω      and      

 ( ) ( ) ( ) ( ) ( ) ( )
c
iiinmnminminmi ack αααα κκωκω 24422 ~ +== , 2,1=i , ∞= ,....4,3,2,1,mn         (100) 

are introduced and nmk are own characteristic number defined as a series of roots of 
characteristic equation obtained from corresponding plate boundary conditions, as it is 
known. 

The solutions of the governing system of corresponding coupled partial 
fractional order differential equations (94) for free double plates oscillations, we take 
in the eigen amplitude function ( ) ( )yxnmi ,W , 2,1=i , ∞= ,....4,3,2,1,mn  expansion, from 
solution of the previous basic problem with decoupled equations, and with time 
coefficients in the form of unknown time functions ( ) ( )tT nmi , 2,1=i , ∞= ,....4,3,2,1,mn  
describing their time evolution. 

 ( ) ( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
1 1

111 T,W,,
n m

nmnm tyxtyxw  

( ) ( ) ( ) ( ) ( )∑∑
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1 1

222 T,W,,
n m

nmnm tyxtyxw       (101) 
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where the eigen amplitude functions ( ) ( )yxnmi ,W , 2,1=i , ∞= ,....4,3,2,1,mn  are same as 
in the case with decoupled plates problem, previous considered in the paragraph VII. 
Then after introducing the (111) and (112) into the governing system of coupled 
partial fractional order differential equations for free and also for forced double plates 
oscillations (91) and by multiplying first and second equation with ( ) ( )dxdyyxsri ,W  and 
after integrating along all surfaces of the plate middle surface area and taking into 
account orthogonality conditions (98) and corresponding equal boundary conditions of 
the plates we obtain the mn -family of systems containing only  two coupled ordinary 
fractional order differential equations for determination of the unknown time functions 
( ) ( )tT nmi , 2,1=i , ∞= ,....4,3,2,1,mn  in the following form: 

( ) ( ) ( ) ( )( ) ( ) ( )
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∞= ,....4,3,2,1,mn  

where time known function ( ) ( )tf nm1  and ( ) ( )tf nm2  are defined by following 
expressions: 
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     (114) 

The system of coupled fractional order differential equations (113) on 
unknown time-functions  ( ) ( )tT nmi , 2,1=i , ∞= ,....4,3,2,1,mn , can be solved applying 
Laplace’s transforms. Upon that fact Laplace transform of solutions is in forms: 

     
( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )

( )

( )
( ) +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⋅++

∆
= pptfTpT

p
tT

nm

nm
nmnmnmnm

nm
nm R2

2

2
22

2
2

1111 1001
ω
ω

ω αLL &  



 
 
 
 
 
 

Katica R. (Stevanović) Hedrih 
 
 
 

           
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )

( )

( )
( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⋅−+

∆
+ p

a
atfTpT

p nmnmnm
nm

R2
1

2
12

1222 1001
ω

αL&      (115) 

     ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )
( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )
( )

( )
( ) )116(1001

1001

2
2

2
22

2111

2
1

2
12

1
2

2222

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⋅++

∆
+

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⋅−+

∆
=

p
a

atfTpT
p

pptfTpT
p

tT

nmnmnm
nm

nm

nm
nmnmnmnm

nm
nm

R

R

ω

ω
ω

ω

α

α

L

LL

&

&
 

where ( )pnm∆  is determinant of the system of equations obtained by Laplace’s 
transform of the system of equations (13): 
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( ) ( )[ ][ ] ( ) ( ) ( )[ ]tT nminmit ptT LL R=αD  is Laplace transform of a fractional derivative 

( ) ( )
α

α

dt

tTd nmi for 10 ≤≤α . For creep rheological material those Laplace transforms has 

the form: 
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where the initial value are: 
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so, in that case Laplace transforms of time-functions are given by following 
expressions: 
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where ( )pnm∆  is determinant of the system equations obtained by Laplace’s transform 
of the system equations (13): 
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5. 3* Vibration modes in dynamics of the homogeneous double plate fractional 
order systems. 

We can consider these ordinary fractional order differential equations (113) 
by new coordinates: 

( ) ( ) ( ) ( ) ( ) ( ){ }tTtTt nmnmnm 211 2
1

+=ξ  

( ) ( ) ( ) ( ) ( ) ( ){ }tTtTt nmnmnm 212 2
1

−=ξ     (121) 

in the following form 
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For the corresponding linear autonomous eigen frequencies are: 

( ) ( )
2
1

2
1

2
,1 anmnm −= ωω  and  ( ) ( )

2
1

2
1

2
,1 anmnm += ωω , and corresponding solutions can be 

expressed by main linear system coordinates in the form:   

( ) ( ) ( ) ( ) ( ) ( )tttT nmnmnm 211 ξξ +=  and ( ) ( ) ( ) ( ) ( ) ( )tttT nmnmnm 212 ξξ −= , where with 

( ) ( )tnm1ξ  and ( ) ( )tnm2ξ , se denote corresponding oscillatory modes in the linear 

system as ( ) ( ) ( ) ( )( )nmnmnmnm tCt 1.111 cos αωξ +=  and 

( ) ( ) ( ) ( )( )nmnmnmnm tCt 2,222 cos αωξ += ,. For the linear autonomous system case  

( )nmsC  and ( )nmsα  are constants depending of initial conditions. 

By introducing following analogous notations: ( ) ( )
2
1

2
1

2
,1 ααα ωω anmnm −=  and 

( ) ( )
2
1

2
1

2
,2 ααα ωω anmnm +=  to the corresponding linear eigen frequencies system of 

ordinary fractional order differential equations, (122) can be transform in the 
following form: 

      ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tftftt nmsnmnmnmnmnm −=++ 11
2

,1
2
,11 2

1ξωωξ α
α tD&&  

    ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tftftt nmsnmnmnmnmnm +=++ 12
2

,2
2
,22 2

1ξωωξ α
α tD&&    (122a) 

where ( ) ( )tnm1ξ  and ( ) ( )tnm2ξ  are new unknown coordinates, not as for corresponding 
linear system,  but new eigen time functions corresponding to eigen amplitude nm -
modes for the  transversal vibrations of the double plate homogeneous fractional order 
system, as solutions of the previous system (122a), which contain two separate 
ordinary fractional order differential equations along only one coordinate ( ) ( )tnm1ξ  or  

( ) ( )tnm2ξ  but same type.  From this system (122a), we can conclude that for free creep 
vibrations system containing two same types of ordinary fractional order differential 
equations as it is (11) or (40) or 74) obtained in the previous paragraphs of this paper. 
Then we can conclude that solutions of system (122a) equations when external plate 
excitations are equal to zero ( ) ( ) 01 =−tf nm  and ( ) ( ) 02 =tf nm  are normal modes of 
time functions with creeping properties in the vicinity of pure periodical modes of 
corresponding linear modes in the eigen  nm -mode. Then also for the free of external 
excitation double plate system  time modes ( ) ( )tnm1ξ  and ( ) ( )tnm2ξ  of the 

corresponding eigen time functions ( ) ( ) ( ) ( ) ( ) ( )tttT nmnmnm 211 ξξ +=  and 
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( ) ( ) ( ) ( ) ( ) ( )tttT nmnmnm 212 ξξ −=  in the eigen amplitude nm -mode, .is easy to obtain 

by  expression  (99) with spittoon corresponding  two eigen frequencies  nmi ,ω , 

2,1=i   of the corresponding  linear system and d corresponding eigen numbers of 

creep system properties nmi ,αω , 2,1=i   in the eigen nm -mode. 
 
5. 4* Concluding remarks for the double plate fractional order system, 
 
The two coupled partial fractional order differential equations of transversal vibrations 
of a creeping connected double plates system have been derived. The analytical 
solutions of system coupled partial fractional order differential equations of 
corresponding dynamical free and forced processes are obtained by using method of 
Bernoulli’s particular integral and Laplace’s transform method. 
For analysis we can compare Laplace’s transform for the case of coupled plates (115) 
and (116)  or  (119) and (119a) and for uncoupled plates for creep system in the form: 
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with determinant (120) or (120a)  and also corresponding: 
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and for ideal elastic system when 0=α , and we can conclude the following: It is 
shown that the two-frequency-like regime corresponds to one mode vibrations for free 
vibrations induced by initial conditions. Analytical solutions show us that creeping 
connection between plate caused appearance of like two-frequency regimes of time 
function corresponding to one eigen amplitude function of one mode, and also that 
time functions of different mn -family vibration modes ∞= ,....4,3,2,1, mn  uncoupled. 
It is shown for every shape of vibrations. It is proven, that in one of the mn -family 
vibration modes ∞= ,....4,3,2,1, mn  of the both creep connected plates two possibilities 
for appearance of the resonance-like dynamical states are present, and also for 
appearance of the dynamical absorption-like, which is also similar to the appearance of 
the resonance and second to the dynamical absorption. 
 
6   MULTI PLATE SYSTEM 
 
6.1*  Theoretical Problem Formulation and Governing Equations. 
 

For the case that we have a multi plate system, let us suppose that plates are 
thin and that it is not the case of deplanation of cross sections in the conditions of the 
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creep material. Also, we suppose that cross sections are always orthogonal with 
respect to the middle surface (plane) of the plate. If thin plates are creep bent with 
small deflection, i.e., when the deflection of the middle surface is small compared to 
the thickness h , the same assumption can be made for both plates as in the [Hedrih, 
2004c, 2005]. 

Now, let us consider finite number M  of isotropic, creeping, thin plates, 
width ih , Mi ,...,2,1= , modulus of elasticity iE , Poisson’s ratio iµ and shear modulus 

iG , plate mass distribution iρ . The plates are of constant thickness in the z -direction 
(see Fig. 8). The contours of the plates are parallel. Plates are interconnected by 
corresponding number 1−M  creeping layers with the fractional order derivative 
constitutive relations type with constant surface stiffnesses. These creep-layers 
connected multiple plate systems are of composite structure type, or of sandwiched 
plates, or of layered plates. 

The origins of the corresponding number M  coordinate systems are M  
corresponding sets at the corresponding centres in the nondeformed plates middle 
surfaces as shown in Fig. 1. and with parallel corresponding axes. The plates may be 
subjected to either a transversal distributed external loads ( )tyxqi ,, , Mi ,...,2,1=  along 
corresponding plates external surfaces. The problem at hand is to determine solutions. 

The use of Love-Kirchhoff approximation makes classical plate theory 
essentially a two dimensional phenomenon, in which the normal and transverse forces 
and bending and twisting moments on plate cross sections [see book by  Rašković, 
1965; 1985] can be found in term of the displacement ( )tyxwi ,, , Mi ,...,2,1=  of the 
middle surface points, which is assumed to be a function of two coordinates, x  and y  
and time t , as in the two previous chapters. 

The plates are assumed to be with same contour forms and boundary 
conditions. 

Let us denote with ( )2

3

112 µ−
=

hi
i

E
D , ( )2

3

112 µ
α

α
−

=
hi

i
E

D , Mi ,...,2,1=  corresponding 

bending cylindrical rigidity of creep plates. For homogeneous and isotropic plates 
material with parameters of material creep properties are equal ααα == yx ; also, 
coefficients of rigidity of momentaneous and prolongeous one are: 000x EEE == y  and 

ααα EEE x == y in all directions at corresponding point. Coefficients of rigidity of 
momentaneous and prolongeous one for creep layer are c  and αc , and the parameter 
of layer material creep properties is 10 ≤≤α . 

Now, by using results of [(Stevanović) Hedrih, 2003; 2004], the relation 
between stress components and strain components expressed by corresponding 
transversal displacements ( )tyxw ,,  of the corresponding plate middle surface 
corresponding point ( )0,, yxN  and coordinate z  of the corresponding plate point 
( )zyxN ,, , than we can write the system of M governing coupled partial fractional 

order differential equations of the creep connected multi plate system dynamics 
formulated in terms of M unknowns: the transversal displacement ( )tyxwi ,, , 
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Mi ,...,2,1=  in direction of the axis z , of the plate middle surfaces (see Figure 8) in 
the following form. 
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a  

b

x  
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h
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Figure 8.  A creeping connected multiple plate system 
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( )
( ) ( ) ( )[ ]{ }
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where [ ]•α
tD  is differential operator with fractional order derivative expressed by (2) 

[see Enelund, 1996 and Gorenflo and Mainardi, 2000], defined by material parameter 
α , which satisfy the following condition: 10 <<α , ( )tyxqi ,,~  external distributed 
transversal loads along corresponding plate corresponding contour surfaces :  

( ) ( )
4
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3
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112
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h
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ii
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−
==

µρρ
ED ,   
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ρ

, Mi ,...,2,1= . 
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6.2*   Method Solution of the Governing Equations. 
 

Solution of previous partial fractional order differential equations (125) can 
be looked for by using Bernoulli’s method of particular integrals in the form of 
multiplication of two functions as in the two previous paragraphs and in some of 
published papers by [Hedrih, 2003; 2004], from which the first ( )( )yxi ,W , Mi ,...,2,1=  
depends only on space. 

For the corresponding boundary conditions, the space coordinate own 
amplitude functions we denote with ( ) ( )yxnmi ,W , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn . These 
eigen amplitude functions ( ) ( )yxnmi ,W , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn  satisfy boundary 
conditions, and also orthogonality conditions. Also, the corresponding time functions 

( ) ( )tnmiT , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn  , are expressed in the form of series as it is 
known.  nmk are own characteristic number defined as a series of roots of characteristic 
equations obtained from corresponding plate boundary conditions, as it is known and 
shown in the .one of previous paragraph. 

The solutions of the governing system of the corresponding coupled partial 
fractional order differential equations (1), we take in the eigen amplitude functions 

( ) ( )yxnmi ,W , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn  expansions, from solution of the previous 
basic problem with decoupled equations, and  with time coefficients in the form of 
unknown time functions ( ) ( )tT nmi , ∞= ,....4,3,2,1, mn , Mi ,...,2,1=  describing their time 
evolution: 

 ( ) ( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
1 1

1 T,W,,
n m

nminmi tyxtyxw , Mi ,...,2,1=      (126) 

Than after introducing the (120) into the governing system of coupled partial 
fractional order differential equations for free and also for forced double plates 
oscillations (125)  and by multiplying all equations of the system with  

( ) ( )dxdyyxsri ,W  and after integrating along all surface of the plate middle surface 
and taking into account orthogonality conditions and corresponding equal boundary 
conditions of the plates, we obtain the mn -family of the systems containing coupled 
only  two ordinary fractional order differential equations for determination of the 
unknown time functions ( ) ( )tT nmi , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn  in the following form: 
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1,...,2 −= Mi  

where time known function ( ) ( )tf nmi , Mi ,...,2,1=  are defined by following 
expressions: 

 ( ) ( )
( ) ( ) ( )

( ) ( )[ ]∫ ∫

∫ ∫
= a b

nmi

a b

nmii

nmi

dxdyyx

dxdyyxtyxq
tf

0 0

2

0 0

,W

,W,,~
,  Mi ,...,2,1=                  (129) 

The system of coupled ordinary fractional order differential equations (128) 
on unknown time-functions ( ) ( )tT nmi , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn ,  can be solved 
applying Laplace transforms as in the case of the double plate system. 

 
 
7  CONCLUDING REMARKS 
 
M  coupled partial fractional order differential equations of transversal vibrations of a 
creeping connected multi plate system have been derived. Analytical solutions of a 
system of M coupled partial fractional differential equations of corresponding 
dynamical free and forced processes are obtained by using method of Bernoulli’s 
particular integral and Laplace transform method. 
Also we can consider these ordinary fractional order differential equations (127) by 
new coordinates ( ) ( )tnmsξ , Ms ,...,2,1= , ∞= ,....4,3,2,1, mn  analogous as in the 
paragraph VIII.3* by using  expressions of the dependence between generalised  and 
main coordinates  of the corresponding linear system for free vibrations when 
( ) 0,,~ =tyxqi , and corresponding eigen frequencies of this linear system.  Then we 

can transform the system (127) in the form: 
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tt
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where ( ) ( )tnmsξ , Ms ,...,2,1= , ∞= ,....4,3,2,1, mn  are new unknown normal 
coordinates of the  system, not as for corresponding linear system,  but new eigen time 
functions corresponding to eigen amplitude nm -modes for transversal vibrations of 
the double plate homogeneous fractional order system, as solutions of the previous 
system (127), which contain M separate ordinary fractional order differential 
equations along only one coordinate from the set ( ) ( )tnmsξ , Ms ,...,2,1= , 

∞= ,....4,3,2,1, mn  but of the same type. ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tftftfG nmMnmsnmnmsL ,.....,,1  are 

linear combination of functions ( ) ( )tf nmi , Mi ,...,2,1= , depending on the 

corresponding functional form between coordinates – time functions ( ) ( )tnmsξ , 

Ms ,...,2,1= , ∞= ,....4,3,2,1, mn  and ( ) ( )tT nmi , Mi ,...,2,1= , ∞= ,....4,3,2,1, mn  in the 
starting of the coordinate substitution and  transformation of the system of ordinary 
fractional order equations from (127) to (129). 
From this system (129), we can conclude  that for free creep vibrations system 
contains M number of the same type of ordinary fractional order differential 
equations as it is (11) or (40) or (74) obtained in the previous paragraphs of this paper. 
Then we can conclude that solutions of the system (129) of equations when external 
plate excitations are equal to zero ( ) 0,,~ =tyxqi  are M normal modes of the time 
functions  ( ) ( )tT nmi , Mi ,...,2,1= , ∞= ,....4,3,2,1,mn with creeping properties in the 
vicinity of the pure periodical modes of the corresponding linear modes in the eigen  
nm -mode. 
By using trigonometric method and solution of the system of algebra equations in the 
form ϕkCAk sin=  , we can obtain that 

M
s

s
πϕ = , ( )1,....,4,3,2,1 −= Ms , and that the 

determinant ( )pnm∆  of the nm -family of the system equations obtained by Laplace 
transform of the system equations (128) can be obtained as one of main results of this 
investigation in the form: 
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 This form is suitable for obtaining separate simple members of expression of solutions 
with simple way of the inverse Laplace transform application. 
Analytical solutions show us that creeping connection between plates in M -multi 
plate system caused appearance of like M -frequency regimes of time function 
corresponding to one eigen amplitude function of one nm -mode, and also that time 
functions of different mn -family vibration modes ∞= ,....4,3,2,1, mn  are uncoupled for 
considered multi plate system. 
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It is shown for every shape of vibrations. It is proved that in one of the mn -family 
vibration modes ∞= ,....4,3,2,1, mn  of the all M -creep connected plates are present M  
possibilities for appearance of the resonance-like dynamical states, and also for 
appearance of the dynamical absorption-like. 
Chain dynamics of the homogeneous system – sandwich multi beam, multi plate 
systems as well as multi pendulum system are investigated by using mathematical 
analogy and phenomenological mapping. 
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