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Instead of preface. In the preface of the book [1] it was understood that
mechanics is an exact natural science; it is as exact as mathematics or, more pre-
cisely, it 1s more exact 1t if 1ts assertions need not only mathematical proofs, bat
also verification by nature. From the science’s standpoint, it can be concluded that
terms “science” and “knowledge” are not the same. The sufficient proof for such
statement 1s many experts cannot agree over many issues in partial and theoretical
mechanics. Science is not made only of present knowledge, but also of checking
and upgrading of that knowledge; it raises a suspicion toward the present knowl-
edge, and it seeks for the new one in the wide theory, starting from its standpoint.
The very standpoint is raising the different opinions in mathematic natural sci-
ences. For instance, there are two explanations of the second axiom of Newton’s
mechanics, which is resulting in big mistakes in practical mechanics. The result of
using of non-standardized mathematic knowledge and its limitations by theoretical
physicians, 1s the deseription of the world that does not exist.

Keywords: Knowledge, science, essence; classical and celestial Mechanics.

ESENCIAL PROBLEMS OF MATHEMATICAL MECHANICS

We see mathematics as the absolute truth; however at the higher level of

knowledge it is changeable, many things are added, and constructed according to
the check ups and needs in practice. We can find definitions of a vector, as the
elements of set of vectors, or as the elements of vectors’ space, however, none of

these are defining vectors in the correct way.This is also observed at the other levels
of knowledge. Widely spread incomplete definitions, on important issues in physics
are present, such as: “The quantity of motion of the system of a material points is
equal to the vectors’ sum K =Y, m;v;,” although it is not correlated to the sum
of connected vectors, like with vectors of velocities v;.
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It is a fact that many mathematical experts do not have the same opinion and do
not agree over mathematical issues. It is natural, since mathematics was developing
as the tree: its branches are growing, they can be modelled, cut etc. Mathematics
is not just a calculation, the way it is understood at the elementary level, it is

wisdom, and derive of the human mind... Thus, mathematics is the key issue in the
theory of mechanics.

For better understanding of the basic problems of science of the motion of a
body, it is necessary to separate the important mathematic terms, that are used in
mechanics, and on which there are no unified consonant.

Numbers are inevitable in any mathematical field. Let us denote by a letter
R, all rational numbers. As Mechanics 1s not fully the rational theory, with the
characteristics : mass m, dimm = M, lengthl, diml = L and timet, dimt =T or
in the other words: m € R(M), [ € R(L), t € R(T"), or: mass m has a dimension M,
length [ has a L, and time ¢ has T'. The different dimensions cannot be summarized,
nor equalized because

M#L#T. (1.1)

Denote by R(M) the set of all of real numbers, the set of all real numbers of length
with R(L) and the set of the real numbers of time with R(T'). These are sets of
denominate numbers of different essentials. Let’s repeat the known fact that the
elements of these sets cannot be summarized, but they can be multiplied

m®. 1. t%  (a,b,e) € R.

These products are now new sets of denominated numbers R(M LT), with existing
physical components, thus they are preserving the essence of mechanics. All other
values and relations of mechanics are calculated by using the mentioned three at-
tributes. If different, according to the preprinciples of existence [1] the would not
belong to the theory of motion of body. Besides the scalar values, determined by
the denominate numbers, mechanics has other characteristics: velocities of mate-
rial points, angular impulses of motion, acceleration, force, moment of forces and
moment of impulses of motion. Such values are often shortly described by vectors
and tensors.

Vectors. Vector i1s a mathematical term that has the numerical value pointed
at the certain direction. Vector can be written in the form

v
vV =uvvg, Vo= —,
’ 7’
where v 18 a numeric value (size, quantity, scalar) ot vector v, and vg 1s the unit,
oriented, non-dimensional vector, so it is

dimv = dimwv.



In geometry the directed segment p is the typical example of vector from the set
of vectors V(L), whose length is p € R(L), and py = '3 is the orientated non-
dimensional unit vector.

As the length of [, I € R(L) or p between the two points can be calculated by
using three coordinate numbers Iy, la, I3 from R{L), also the vector p can be written

by using these numbers and three independently oriented vectors (e1, ez, e3) € Vs,
as

3
p=> pes |eil=1, eile;.
i=1

Analogous to the form p € R(L), it is possible to write p € Vg, or p' € R*(L),

where V3 is the defined set of three vectors, and p' is the set of real numbers
g T - ) . . - n .

p' € R(L). Accordingly to the above mentioned, we have: vectors set R™ on linear

base of vector V,,. The mentioned approach to the term of vector is not accidental,

as some of the generalized “vectors’ space” and its use leads to the different opinions

in mechanices.

Addition of vectors. In vectors’ caleculus and its application in mechanies,
three vectors are present: free, slide and constrained vectors. Free vector is deter-
mined by size, imaginary direction and orientation. (Fig.la); slide vector is the one
whose direction is determined by a line coinciding with axis of vector (Fig. 1h).
Constrained vector for point is defined with the corresponding point, by size and
oriented direction (Fig. le). The differences between them are considerable.

Figure 2 is showing the obvious difference between vectors.

da

Figure 1. Vectors

Figure 2. Radius vectors



Positions of points My and My can be determined by the variety of radius vectors
ry and rs, whose poles F; are the arbitrary points of the observed plane line.
However vector p = pp, 1s the only one

g —Tr; =...=Ty —I'y_1=§, (ng

if points P;, My and M; belong to the same plain. If the vector p belongs to
straight it is called slide vector or vector constrained to live. Forces in mechanics
are described by such vectors. Some authors even described the force with “force
is a vector”. Slide vectors in the plane, can be reduced to the intersection point.

The first rule of addition of vectors is defined by the rule of parallelogram: the
sum of two vectors is equal to the diagonal of the parallelogram formed bay these
two vectors.(Fig. 3).

Reduction of the system of the slide vectors to the point in the compact domain
(body), is presented in the figure (Fig. 4). Let F; be vector an the M;. The
state of vector F; in the point M; will be not changed if we add two other forces
F) and —F}, such that Fj, + (—=Fj) = 0. Thus at the point M}, we obtain vector
F =F,; + F}, and vector of moment of force M}, = p; x F;.

Figure 3. Vector sum

Figure 4. Reduction on vector to another point
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Using the same approach, all forces can be reduced at a point C, to one main
vector

F-= E F;, dimF; = MLT2,
i
and one vector of different dimension - main moment

Me =Y pix Fi;  dimM= MLT™ ", (1.3)

From the above considerations we obtain the following theorem: FEvery system of
vectors By, freely positioned in a compact domain, can be reduced to the main vector
Feo at an arbitrary point C, and to the main moment Mg, which is equal to the
sum of vector products radius of vectors p; and F;.

Note that the main vector is not the resultant of the system of all vectors,
reduced to the point C', but together with the main moment Mg it 1s equivalent
to the system of all vectors in the existing homogenous configuration.

The use of algebraic operations on constrained vectors, as well as on free vectors
leads to the inconsistent results.

Example. The velocity of material point is a typical constrained vector con-
nected to the material point. Suppose two material points My and M are two
vehicles, running at the strait road parallel to each other, with the same velocities
vy and va. The reader should try to sum them 7!

The sum of two constrained vectors for non-congruent points is not correspond-
ing to the definition of sum of two free vectors, and even less to the driving practice
of observed vehicles. In order to avoid the mentioned problem of complexity of vec-
tors’ calculus in summing different vectors, we use the scalar calculus in analytical
mechanics and in differential geometry.

Multidimensional vectors “spaces™. Opening the quotation marks, the an-
thor would like to emphasis the difference of the term space as the natural reality,
from the various mathematical “space”. In Euclidean geometry, the position of
ani point with refer to the observation point can be determined using the vector
of position: this means that we have to know three data - size of the vector of
position, direction and orientation, or three defined components of the vector

3

r=yi+y2+ys=) yleii=y'e,
i=1

where e; € Eg are three orthonormal unit vectors, directed to each other. Contrary
to the term component y; € Eg, numbers or scalar function y* € R® is called vector's
coordinate or “vectors”, where the vector’s base is known in advance. Number of
basic vectors and number of vector’s coordinate are in most cases equal, however
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it is not a rule,especially in Euclidean geometry. Thus, if there is N mutually non
constrained points, their positions are determined by N vectors ry; v =1,..., N:

3
r, = Yu®i,
i=1

where 3N coordinates 3, are appearing over the base Es. Here we should not forget
that it 1s not the 3N -coordinate space, it 1s in fact three dimensional vector in Ej.

Zru = Zyu e+ Zyu es + Zyu (1““

=1 =1 =1 =1

Similarli with refer to some other vector base g;;¢ = 1,2,3 can be written
p = flgi € Ra, or (f1, 2, f3) € R®. If, for example, 4* = 0, or 2 = 0, we will
have two dimensional coordinate vectors (y',4%) € EZ, or in general R?, where the
relation f* = 0 is present.

Let’s notify that vectors from R* i R are linear ones at the base vectors, regard-
less of non-linear level of it is coordinate functions f*. That’s way we call them
linear (read: vector’s) space. If the linear level is measured with refer to the level
of coordinate function f*, then they are nonlinear vector space. In the curvilinear
coordinate systems of x!, 2% 22, which are in mutual transformation with linear
c00rdinate vector ', e.g. 3° = v'(x?t, 22, 2%), for which is ;

| Ii

the differential of vector can be written in the form:

or | . dr . . dyt | . . .
dp = 8 : dy* = ﬂd\-u‘ = dy'e; = %dﬂe@ = g;dr’?, (1.5)
where iy
Cy 9y .
gilx) = 97 & (1.6)
Thus, metric in dp? € E? has the form
dr  dr . dr
2__ - _ g _ i _ -
dp =57 0y dy'dy’ = s 5 T datdsd = §dy'dy’ = gi;(x)detde?,  (1.7)
where
gij(a,2?,2%) e B¥C R(L); ,j=1,2,3

1s the metric tensor of Euclidean geometry.

Multicoordinated manifolds of differential geometry. The term “Multidi-
mensional” or “Multicoordinated” stands for geometrical forms, which are de-
seribed by one coordinate or component. The most simple one and thus the most
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general manifold is N points M, with the positions determined by N vector po-
sition (1.4). Number 3N of coordinates 3 is found in the expression y, € B3V <
R(L), but one should makes the difference between E* and Es, because, all the
mentioned vectors ry, can be summarize in a three dimensional vector (1.4). This is
possible because all the vectors have a chosen starting point. However, if while ob-
serving vectors Q. Ar,, that are individually constrained for the own v-th points,
we are obtaining N coordinate system, where the poles are exactly the points M.

It is not possible to summarize these constrained vectors Ar, without deducting
them to the point, which is again not possible without parallel moves, or adding of
vectors of moment (curl) of this vectors. The coherence between 3N coordinates
of vectors Ar, and 3N coordinates of vectors ey1, ep2, ep3 1s now there..

Through analysis of the eurvilinear systems of coordinates, it is emphasized
that all curvilinear coordinates x do not have dimension of length. Further, basic
or coordinate vectors are not constant vectors, they are in fact appearing as the
vector’s function of curvilinear coordinates. It is important here to notice that
vectors Ar,, as well as differentials dr,,, are significantly different form the vectors
r., as each vector dr, is constrained to its relevant point M,. Thus the vectors’
summarizing is very difficult. Also, this is a reason why the differential geometry
and analytical mechanics is using more scalar relations and invariants. Exchanging
the linear coordinates y* with curvilinear coordinates x, with general relations y* =
y' (xt, 22, %) the geometrical essence of differential Ar, must not be changed, and
this is provided by relation.

or . or oy . . . _ \
Ar = 6; Ayl = a; ai‘ Az? = Ayle; = Axdg;, (1.8)
or : £ . -
Ar  dr Oy' O Ayt Al .
As 0y 00 As  As T As L8

From here, it is shown that coordinate vectors

.. Or
BJU-J—W

are present as vectors’ functions of curvilinear coordinates of the starting point of
vector Ar. The introduction of curvilinear coordinates for each point or partly for
some of the points, is justified only for points, that can be written in the form
constraints,

fulrsseoey) =0,

or related to linear system coordinates

(1 3N
fuly .., y77" ) =0,
or equivalently in the curvilinear system of coordinates

fulzt,. 2Ny =0. (1.9)
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As example, if a point belongs to the spherical surface, described using the
Descartes’s coordinates, as the equation yf + y3 + y3 = ¢, and in spherical space
of coordinates p,¢, 8, with the simplified equation p = ¢, normally the spherical

coordinates will be used.

Each of the vectors

dr,,
drv - A ; d‘ v
can be scalar multiplied with the relevant vectors 8—1“;—, thus, being scalars, they can
summarize:
N N
dry Ory ¢ Oy p i
Za’r,, . —! = Z 81! dr,, '1; = Zg,,[;uj”d;u:”, = gm(.rl, R Y. S
v=1 L Oz, v
where the formal equivalent =¥ is introduced for the z3 72 = #3—1 = 1%,
Also,
N N
Z dry -dry, = Z = g(u)zjd‘ = QM{-L 3\ ‘Jd-LE-
=1 15
can be written. On the tensor
i = Q‘j«;{-fl.‘ 2oc aii-'BN,)a (1.10)
likewise an in (1.7), the metric can be established.
dr? = gy (x)daFdet. (1.11)

Accordingly to the metric tensor (1.10), one can say it is “metrics of the 3N-
dimensional space”, however it is omitted to notify that such constructions is ob-
tained through different exchanges.“Multidimensional space”, obtained in such a
way, can have the fictive sense geometry, and not the real one. Multidimensional
space of geometry is a mathematical term, which presents a number of coordinates
or coordinates’ manifold, used to define a position of the system of N points,
where the systems constrains, are like in (1.9).

For the system of points linked by the final constrains (1.9), where it is under-
stood that functions f, are indefinite in the possible space, e.g. in the space where
the conditions are satisfied:

13] : )
6'_?:20';1_-“:0 |0f,02° |£0; i=1,...,3N,

df, =

it is possible to define coordinates «' in the function 3N — k& = n of independent
generalized coordinates ¢'....,q", on which the metrics is done

ds® = gapdq®dq”. (12)



Tensor

gaslql....q") e M" (13)

1s often called the metrics tensor of n-dimensional configuration space. There is
nothing unclear: at the plain school globe of our planet. many places, marked by
point are defined using two independent coordinates ' = ¢, ¢> = 8 € M2. However
this the plain globe, where it is visible that the Earth is not a mathematical sphere
R = ¢ = conct., but the real body. where many hills, mountains, and other places,
are defined by a height.

2. GEOMETRIZATION OF MECHANICS OR DYNAMIZATION
GEOMETRY

In the introductory relation it is emphasized that besides the set of number in
geometry R{L), the essence of mechanics is made also with R(M) and R(T). It is
done in a simple way, by multiplying the numbers of geometrical origin with scalar
values of masses m € R(M) and time t € R(¢). In the introduction of its important
paper, Newton wrote on May 08, 1686: “Geometry is base on mechanical practise
and it is nothing more then the other part of the general mechanies, in which the
skill of precise measuring is presented and proven.”[2].That statement of the great
scientist has the same importance even today.

The expression (1.8) 1s divided with the small interval of time At, e.g. limiting
value of the relation of distance and interval of time At, for which the material
point is moved from one position r(t) in the nearby other position r{t + At) on
time is according to the definition the velocity of motion of the material point

dr dr Or . . .
V=G = oyiom =i =i 2

Considering as important, it is written,
dimv = dim ¢ = LT~ (2.2)

and, as well as, that the velocity v,, is the constrained vector for v point.

The product of mass m of the material point and its velocity vector v is called
the motion impulse of material point,

p =mv. (2.3)

Thus the impulse of material points is a vector connected to the point. The
basic physical dimensions of the important term are all essences of mechanics, e.g.
dimp=MLT! (2.4)

Obviously vector p, of material point has the same vector characteristic as the
velocity vector v,u in the addition process. It means that the vectors of impulses
p of the mmtually connected points of the system are not added as free vectors.
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Sum of impulses of motion of several material points has a big importance in
the system of material points. The term “system” means that the material points
are connected with some constraints f(r,, v, ) = 0, which must be taken into con-
sideration at the addition of velocity vectors.

Accordingly, impulse vector of the 1-th material point of mass m,, of the observed
system can also be represented by the formula

r]} - 5
Py = mMyvy, = m@q“ g~ (2.5)
!/
Scalar multiplication by coordinate Vectors g i gives vector p, projection upon

the tangential direction of ¢° coordinate of the v-th material point. We will denote
it by a two-indices letter:

ory  Ory .,
Peg = ?nua = 8q’3q J

This is in accordance with the formula for impulse’s coordinates of one material
point. Regarding the fact that p, s impulses are scalars, it is possible to sum them

up:
N

dr,  Ory, ., . .
prs = Zmpa ; (qusq = aaaq”, (2.6)

=1

from which it can be seen that a,g is an inertia tensor of the whole system:

N

dr, Or,
Aap = Z ni'uﬁ ' 69":3 = Qagp (???-1_‘ ooc .‘?N'N;qo! qlr CELE qn) . {
=1

%)
=1

A B. Gohman [30], in his booklet, emphasizing the importance of dependence of
tensor aqg of the mass, for the proper interpretation of mechanics of systems with
variable masses, reference to the papers of V.A. Vujicié.

By comparing the geometrical formulas and the mentioned mechanical formulas,
the great similarity is observed, and for some mathematic interpretations, they are
even identical. However, the clear differentiation exist:

1. we discussed the geometry using the numbers from S(L), and mechanics using
the numbers from the set S{MLT);

2. tangent vector % in geometry is corresponds to the vector gl fif in mechanics;

3. in geometry the impulse of motion of material point, of dimension M LT, does
not existence, neither do the very material points.

4. Points in geometry are not-dimensional, and material points has the dimension
of mass. We can say that the material point is geometrical point, where the masse
added, however big different existence, as one geometrical point can be the very
same one for the indefinite set of material unequal points.
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5. For physicists and natural philosophers, the difference between metric tensor
(1.13) and the related inertial tensor (2.7} is important.

6. In geometry the verbs “moving, pushing, caring, ...” are used, but those
words are requiring the use of time t,dimt¢ € R(T'). The term motion is the part
of kinematic, which is a part of mechanics. Thus the correct of subtitle where the
geometrical mechanics is emphasized should be repeated. The geometric Mechanics
1s made of system of material points of the image of multidimensional space, being
only fictions and incorrect images on unreachable objects, especially in celestial
mechanics.

Systems with Variable Constraints. In the case that finite constraints
fp[';ul,.. Lz 1) =0, (2.8)
depend not only upon z!,...,2z*" coordinates, but also explicitly on time as well,
velocity conditions and those of acceleration considerably change, since the number
of addends is increasing under these conditions as is obvious in the following velocity
conditions: of of of
T B B - L 2.9)
fuo==—tv'+—=t =grad, f, -v, + =£ =0. (2.9)
BT oy ot . ot
The variable constraints in time must satisty the dimension equation, that is, they
have to be dimensionally homogeneous. In order to achieve this homogeneity be-
tween y coordinates of L dimension and time ¢ of dimension T', it 1s necessary to
connect these values by some parameter & of the dimensions L and T'. Therefore,
time in mechanical constraints appears in the structure of the functions containing
dimension parameters, so that variable or moveable constraints, in accordance with
definition (2.8) are written in the form:

fuly,m) =0 (p=1,...,k), (2.10)
where 7 is some real time function with definite real coefficients having physical
dimensions. For the sake of brevity, instead of function 7 with definite coeflicients,
let’s introduce an additional coordinate 4%, so that it satisfies the condition

fo=4"(r,t) —7(t) = 0. (2.11)

In general with 4” coordinate, rheonomic constraints can be written in the form

Fawy®) = fu0" .2 Y) =0, (2.12)
\_.V.—’

while the velocity and acceleration conditions in the form (2.10) and (2.12), that

Ofp - 0f, . Ofu .y
= = = — e :D
aj Ay y+ 5_y0y

18,

fi : (2.13)
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o Pl O
P[ _P[ T —
P .. P*f f o0 Ofu.  Ofu. \
. 9 300 ¢ B R0 — 2.14
3y8-yyy+ D500y ui° +6-y03yoy Y+ 8yy+8y0 (2.14)
The last acceleration relation can be written in a shorter form

8f iy f ZJp =0 A LR A Y
a y + a 0 y li)[y _‘y'.y ?yJa {21-)]

where the composition of function ® 1s obvious.

If § from Lagrange’s equations of first kind

a .
my—Y—I—ZA f*‘ (2.16)

is included in equation (2.15), it is obtained that:

ﬁmz O (- Syt -y e

The solution with respect to unknown multipliers A, shows that the reaction
torces of variable constraints do not only depend upon 7 coordinates and § veloc-
ities, but also on §°, as well as on inertia force —mi® which emerges due to the
constraints’ change in time.

The constraints in equations (2.10) and (2.12) can be written in the parametric
form:
ry =Ty (qo,ql,...,q"’) , n=3N-k (2.17)

where g = (ql,. L q ) are independent generalized coordinates, while ¢° is a rheo-

nomic coordinate satisfying equation (2.11), that is,
" —7(t)=0. (2.18)

By reducing the finite constraints to the parametric form {2.17) the number of
differential equations for the constraints’ number is also reduced; at the same time,
constraints’ forces R are eliminated which makes it considerably easier to solve the
problem.

The velocities of v-th material points, according to definition (2.1), can be writ-
ten in the following form:

dry . ﬁryq.l R ory .,  Ory .,

§q0q gt C)q“q - ﬁq“q

Vi = {219]
dry, . . - .
where a—a( g) are coordinate vectors that will be marked by two-indices notation

Buo; Index v denotes the number of the material point, while index a denotes the
number of independent coordinates q® (e =0,1,...,n).
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For addition with respect to index v, we use addition sign >, while for addition

v

with respect to the indices, coordinate o denotes iteration of the same letter in the
same expression, as well as both the lower and the upper indices. Vector (2.19),
as can be seen, has n 4+ 1 independent elementary vectors. Accordingly, impulse
vector of the v-th material point of mass m, of the observed system can also be
represented by the formula

ar,, | .
P =My Vy =M r.‘?q:-': q~. {2.20)
e . dry . . . . .
Scalar multiplication by coordinate vectors 98 gives ‘coordinate impulse of the
q
v-th material point:
dr, Or, .
Pug =y —=¢",  a,F=0,1,... n

dg  dgh

This is in accordance with the formula for impulse’'s coordinates (1.25) of one
material point. Regarding the fact that p,s impulses are scalars, it is possible to
sum them up:

N N dr,  Or
v v o, . .
Ps = ZPUIS = Z ﬂluaq_a . 6(}3 qa = ﬂ'cr,Sqaa {QQIJ

=1 v=1

from which 1t can be seen that a,g 1s an inertia tensor of the whole system:

N

Jr,  Ory .
Qng = Z myﬁ . aq:S = Qag (m.l, camyia gt .,qn) g (2.22)

=1

By means of important relations (2.21) the concept of generalized impulses of the
material points’ system is introduced. The generalized impulses appear as linear
homogeneous forms of the generalized velocities, which is in accordance with the
basic definition of impulse (2.5). Regarding the fact that the inertia tensor a,g de-
terminant is different from zero, it is possible to determine the generalized velocities
¢® as linear homogeneous combinations of the generalized impulses, namely:

§* = a®*pg, (2.23)

where a®® is contravariant inertia tensor.

If the constraints do not explicitly depend upon the known functions of time 7,
there is no rheonomic coordinate ¢°, so that in all the expressions, from (2.16) to
(2.22), coordinates ¢%, ¢° and pg vanish. The impulse form (2.21) does not change,
expect for the fact that indices @ = 0,1,...,n do not assume values from 0 to n,
but from 1 to n. In order to facilitate this distinetion further on, let Greek indices
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a, 37,8 assume values from 0 to n,(a, 3,~v,6 = 0,1,...,n), while the Latin ones
take i, 7, k,I from 1 to n (i,5,k,1 =1,2,...,n). Then it can be written; [1],[3]:

v, = ‘;;;q'-” % (2.24)
or
i = &0«;5}’0 + az'jq"j
po = anoq” + ag;d’
¢ = a’%py + a'p; (2.25)

-0 _ 00 035

g =a p,ta’p;.

Therefore, kinetic energy E}, of a rheonomic holonomiec system represents a homo-
geneous quadratic form of generalized velocities, which can be developed into the
mmvariant form

2E; = aapd®¢® = a®paps. a,f=1,...,n+1, (2.26)
what is distinguished from standard noninvariant form
2Ek = aijd'q’ + 2big' 4+ ¢, 4,5=1,...,n.

In the case of finite geometric constraints, rheonomic coordinate ¢° = 0 and formmla
of kinetic energy obtain known homogeneous quadratic form

2Fr = aiji'q’ = a“pip;, i,j=1,....n (2.27)

Ceneralized coordinates g',...,q" and generalized impulses p1,...pn are called
somewhere “Hamiltonian coordinates”. It is not only formal problem, which will
be shown in the following text.

3. NEWTON’'S AND HAMILTON’S TASK OF MECHANICS

In the explanation of Definition of centripetal force ([2], p. 27), Newton is
stating that * the task of mathematician is to find such a force, which will keep an
observed object at the given orbit, with given velocity, and the other way around:
to find such curvilinear way in relation to which the given body is moved from the
starting position at the given velocity.” In the modern literature, this Newton's
standpoint 1s known as I and II, or “direct or inverse task of dynamics.”

In general, we are discussing the mixed system of definite and differential equa-
tions:

d r!/ . \
m.,,L =myt,=F, v=1...,N; (3.1)

dt
fP(rU:FaJ] = 03 = 13- .. _‘k = J.\."? {32J
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which we can use also to determine force..
Example. Two material points are moving, accordingly to the second and third
Newton'’s axiom. The differential equations of motion are:

??Elf‘l = Fl, ???-gi::g = Fg, Fl = —Fg; f33]

and equation of distance is

p(t) =ry —ry. (3.4)

Our task is determine forces. The complete system of 4 equation (3.3) and (3.4).
By differentiation of equation (3.4) twice in time

Iy — Iy = p, (3.5)

is obtained, or accordingly to the equations (3.3),

. Fy Fy F, + mg

ma  mi mima
From here, it follows, [18]:
mimg .. q
Fy= F, = "2 (3.6
m1 + ma

as well as

.2 e 2
— pp — U5, Mg
F = 4 PP or )
iy + ma P

This result, which is first obtained through Lagrange’s equations of the first kind,
[1], raised the concern at certain numbers of physicians. At the scientific seminars,
several participants were of the opinion that the force cannot be determined based
on the known motion.In that discussion, it is raised an inspired question: can
the Lagrange’s method of indefinite multipliers be used in Hamiltonian differential
equations

. aH o
Pa = _aqa,v [3*%J
o OH o
q _%3 (3.B)

in which no forces are present, and do not explicit have neither forces nor Lagrange’s
multipliers of constraints.

The answer to the question was presented at the Congress of Theoretical and
applied Mechanies of the Serbian Association for Mechanies 2007, in the paper
“Hamilton’s inverse problem [5]. The only reaction was by a reader, who was of
the opinion that the title was not correct. As the comment has shown that matter
was nor understood, we will mention here, in order to present it more clearly, some
basic standpoints of the analytical mechanics.
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Hamilton’s inverse problem. In the papers ([6], pp. 236-237) Hamilton is
shows that Lagrange introduced the function of force U, consisted of mass and inter
related distances of few points of the system. He further writes:

U , U , o
6.1,'?"" mily = ayz s Myz = 6_'33

"
myr; =

(3.8)
After some short transformations and inclusion of function

H=FE.-U :Ek(ﬁl,i‘g,...,53‘\.';-!}1,?}2,...,?}3N) —U['?}l,-r}g,...,-qg‘w\] =E.+FE .

Hamilton is obtains, as he said, a new way of presenting of differential equations of
motion of the system of N points that are attracting or repulsing each other:

dy SH doy  6H
@, dt | om)
dpp  SH  do,  SH
dt @y dt | omp)

dnzy, _ oH . dioay, oH

dt ~ d@a,  dt Oz,
where are @, 1, § Hamilton’s symbols for: & =p, n=1y,4 = d.

From that stand point, Hamilton is again emphasis that a task of mathematical
dynamics for a system of N points is, integrate system of 6N ordinary differential
equations of the first order, ([6], p. 237). This considerably differs from the two
quoted Newton's tasks of Mechanics.

As a difference from Hamilton's understanding of a main task of dynamics,
Newton is seeing it in a more general way. In the introduction of the first edi-
tion ([2],p.2) he emphasized that the rational mechanics is a science on motions
produced by forces, and on forces is presented and proved.

In the quoted part, Hamilton is not even using the force as a term in Newton's
way. The discussion over it, thus we named a problem, e.g. “Hamilton’s inverse
problem”, as there is no other way to define a force using the equations (3.A) and
(3.B) in which no forces are present.

Let’s also mention that we start from the Newton theory, that is corresponding
with Hamilton’s method [1]. For the assumption that the function of force U = —U,
1s given instead od the force F and for the assumption tat m = const., the equations
(3.8) can be written as:

dp; OE,

= - i=1,2,3.

Hamilton's differential equations (3.A) are equivalent only to such systems of
equation of motion (3.9), and not to the Newton’s general equation (3.8), neither



to the equations (3.1). Hamilton's equations (3.A) and (3.B) do not have the same
dimension, when equation (1.B) are with dimension of velocity LT and equations
(3.A) with dimension of force M LT 2,

Equations (3.8) are the physical base of Hamilton’s differential equations (3.A)
and (3.B). Transforming the form of equations (3.9) to the forms (3.A) and (3.B)
1s mathematical formality.

In order to make it more clear let’s show it with a simple example for motion
of one material point. Vector of position of some material point r = yle; we will
write using the Descartes’ coordinates y € F®;e := (eq,eq,e3) € Eg, and vector
velocity as v = 7e;.

With refer to that system of coordinates it will be

pP= ???-Z}ée«; — P = 5«;j'§'i.‘
where d§;; Kronecker’s symbols. From here, it follows:

T :

& Pk

Yy =—pi==.
m m

As the kinetic energy is, according to the definition

mv?  mdi ;. ;&Y 14 o 1
Ey = 5 = g VY =5 PiPi = 507 PiPj; (3.10)
it is obtained
_z._E)Ek_ﬁEk—l—Ep_aH_p_i (3.11)
T oap; Op; T ap; T om’ c
p@=§Ef :CLE'R-I;EP :_(‘?H; :_8E;,. (3.12)
dy dy dy Oy

The function H is Hamilton’s mark ([6], p. 237) for the sum of kinetic and potential
energy, e.g.

. 1, .
H(y',y% 4% p1,p2:p3) = Bx + Ep = 5" pip; + Ep(y). (3.13)

Let’s observe that relations (3.11) have a vector’s structure, as j° € R*(LT) are
coordinates of tangential vector v € Rg(LT). However. coordinates of impulse
p;i € R3(M LT have covariant structure. Thus, differences between equations (3.11)
and (3.12) are big. They are even bigger especially at curvilinear coordinate systems
x = (21,22, 2%), and especially generalized coordinates ¢® € M™. However, the
function H is a scalar invariant and it should have the same physical dimension of
energy in all coordinate systems,

dimH = ML*T~2, (3.14)
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The mentioned fact are not predictable in mechanics, although equations (3.11)
have the same form as equations (1.B), and equations (3.12) as general equation

(L.A).

It should be previously determined values of indexes «v,J, ..., in Hamilton's
equations (1.A) and (1.B). For the new condition f(y!, 4%, %) = const. or the new
limitation of motion, f(y!,42,4%) = 0 the additional force R = A grad f is needed,
in equations (3.12) likewise. Those forces can be lost, if the calculation is done
according to the homogenous system of equations (1.A) and (1.B).

Let’s show it at the simple example of motion of the heavy point with mass m,
in some plane, e.g. at the condition:

Fh ) =ap + by +ys =0, (= wi). (3.15)

The task:

1. To determine magnitude of the force
R = Agradf, (3.16)

that keeps a body in plane (3.15) with Hamilton's homogenous equations and La-
grange’s multipliers A.

2. To solve the inverse problem of Hamilton’s homogenous equations and coor-
dinates (p,q) € T*M?2.

1. Starting of equations (5}, i.e. (10) at the condition (19) and Lagrange’s
equations the first kind, the Hamilton’s system of equations is

. OH ar .
= ——— + A=, 3.17
P By + By (3.17)

and oH
;= (i,7=1,2,3). 3.18)
V=g (i, =1,2,3) (3.18)

In this example it is reduced to:
OH 337 _ _a,

Py gy =

oH Aﬁf — b,

SO Toy?
. OH ar
pa——a—y3+ 8_3,15”__??19+}“
L

f=ay +byz +y3 =0,



because
&4 3
H=E,+E,= 5oy PiPi + mgy”.
It follows

= 1, . .
f=—(1+p2+ps)=0.
By moving p; from equations (19) in this relation, it is obtained

. myg
T 14a+b?

Thus the coordinates of the searched force R are

mga mgb

mg
—__mge  p___MP g
T+a2+82 2 1+a24p2 °

R SR
! L+a2+b2

and the magnitude R of the force R is B = mg(1 + a® + b%)1/2.

2. With homogenous system of equations (1.A) and (1.B), the steps for solving
this task are as follows:

f' ) =0—y* = —axr —by = —aq' —bg": (q'.q") € M.

Ey = S0 + 33 +33) = TI(1+a%)(g)? +2ab(§" ¢ + (1+6)(¢*)?);
pL = m.([l + a-zjq'rl + abg'rz), p2 = m.((a-bq"l + {1+ szg'rz);

A=1+4a2+1?,
g (L+¥)pr—abpy 5 (14a?)py —abp
4 maA 1= maA '

1 . .
H=Ex+Ey=g—[(1+ a®)pt + 2abpipz + (1 + b%)p3] + mg(aq' + bg?).

Equations (1.A),

. oH _ 0E,
P = _C?_ql = _—ﬁ‘ql = —mag = Q1.
oH _OF,

Po= —op = 222 = _mbg = Qs,
94 9q
are clearly showing that generalized forces (), are not considering force R.

As an example, Hamilton is observing a system of two points, with a known

function of force, ([6], pp. 199-200),

U=mymaf(r)
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where: e
r=((r1 —22)? + (y1 — y2)* + (21 — 22)?)
For ([6], pp. 207-212)
, 1
f) =+
-

Hamilton is observing motion of planets or comets, which are obedient to Newton,s
gravitation law. Such problem is related to the integration of differential equations
of motion. In this case, when the function of force is given:

B} . . . ) L2y —1/2
U=mymyf(r) = ???-1??12((-51 —22)% + (y1 — 42)* + (21 — 32J2) i

a force can be determined without equation (1.A) and (1.B). In:

r at I — I3 r o z] — 79
= — =mymg————, ..., = = myma s
T 9y 3 1T an r3

the needed force is obtained

_ 2 2 2\1/2 _ myma
Fl__(FI1+Fy1+FzL) -T2

It the function U is known; also the force F is known, we see the inverse problem
as: a determination of force based on the known attributes od motion - position,
velocity, or position and impulse of motion.

Our approach, in the concrete Hamilton’s example of motion of two material
points of masses my and ma, we determine the force Fy, with which the body of
the mass m 1s acting at the body of the mass ms at the equation

F=(r1—22)? + (1 —2)? + (21 — 22)? — p*(t) = 0. (3.19)

Differential equations of motion (3.17) for this example are:

. of .. of ., Of
mir = AG_.::l" miij1 = )\a—yl, miZ; = )\331"
Mola = A%, maijs = g_;;’ maZp = Ag’i

With equations (3.19), the unknown multiplier of constraint, can be determined:

f=2(x2 — x1)(d2 — £1) + (g2 — y1) (G2 — 1) + (22 — 21)(F2 — £1) — pp] = 0;
f=2[(@2 — 1) (i2 — 1) + (92 — dotyr ) (o — 1) + (P2 — 21)(F2 — 51) — p° + pp] = 0
By substituting 4° from the equation of motion in the previous equation it is obh-
tained

\= 52+ pp—v2. mymg
- m1 + ma pz '




And as

a 1] a
Fi= (2" (B4 (2L

the force is obtained .
Fi=-x—2, (3.20)
P

where: ) )
P + e — Var
my +ma

It the observed material points are planets of the Sun system and the Kepler's
Laws are taken in consideration, i.e.

p 2 2abm
=— 0=C= ,
d 1+ ecosé’ p T
the formula (3.20) is ebtained
P 47.'2&.3\ mmg _ | mamg ? (21)
(m1 +mo)T2  p? 2 )

where
k= 4n?a?
a (m1 + mg T2
1s a factor of proportionality, known also as gravitational constant.
Let’s discuss now the solutions of that task using the Hamilton’s variables:

I,Y, %} Pa Pys Pz- For the previous example of two bodies motion at the distance
p(t), differential equations of motion are reduced to::

. Pz 5 My e M=
r = , M =—, 1= 4
my my My
. P2z . P2y . P2
I9 = . Y=, Za= .
Mo Mo 1Mo
a af af
= A = A—, =) . 3.23
Piz ar Ply Ayr Piz Bz ( )
af af ar
= =, =P (3.24
P2z A P2y Ays z B2 )
The conditions for velocities and accelerations are
; ¢ P2 Plx . P2y Ply, P22 Pz, .
=2{wg—m)(— — — = S U ) e Y it d S FN =0
f [(2 = x1)( mg MMy )+ (g2 —y1)( mg MY )+ (2 —=1)( g My )= pp] k

o= Play? Py P2 (P2 Plzy? e Pix
f_Q[(mg ml) U (??12 ml) U (??1-2 ml) + (2 ‘Llj(mg ml)+
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: (P P1 p2: P o N
(o — ) (B2 = B2y 4 (o — o) (B2 - ) = 2% + ).
m2  mi mz
By substituting of the first derivative of impulse p; from the equation of motion

(3.23) and (3.24) into the previous relation, it is obtained:
of 1 af 1 LOf 1 of 1

2 4 M\(za—xq ) (A — ————)+.. . H(z—2
v+ A[(w2—x1)( p - 3£1??]_1)+ +(z2—21)(

Oz o Az 1y

or shorter i
my +m . . .
w2 A AR = pji =0, (3.25)
Mo

as
P Pixy2 (P P2 (P Piny?_ 2

mo 1My mo 1y mo Ty or

Thus, the formula’s (3.20) are reobtained, throngh the more complicated way.

The mentioned examples of motion of two bodies clearly show that Hamilton is
discussing this task, starting from the known potential energy or function of force
U7 = 1/p, while at Newton, the force is present in the start-up equations (3.1).

The obtained formula (3.20) is more general from the formula {3.21). Tts impor-
tance is shown in the best way at the example of determining of the force of the
Sun’s and the Earth’s acting on the Moon.

4. DYNAMICAL PARADOX IN THEORY OF LUNAR MOTION

Standard approach to the problem. In the broad print book (8) on the 64.
page, the question raised: Why the Moon does not fall on the Sun? *The question
may look naive”, the author says, “however when the readers found out that the
Sun is attracting the Moon with the higher force than the Earth is, they shown
the superior. "Using the simple calculation, the author is showing that the Sun's
attraction is twice bigger that the Earth’s. In the book of a higher mathematical
rank ([9], p. 149), it is more precisely calculated that the Sun’s force is 2.5 time
bigger then the Earth’'s one. Such dynamic paradox is obtained if the mentioned
torces are calculated using the well known formulas of the size of the “Newton's
universal force of gravitation” (3.21),

Me, .
Fo=—k I'ém.‘ (4.1a)

where M, mass of Sun, F;, Sun's force which acts to the Moon of mass m. The
force of Earth, which mass Mg, which acting to the Moon is

Mgm
F o = —f\' 3
P

_. (4.1b)

The relation of their magnitudes 1s

Fo _ Mg Pg{:



For known numerical values [10],[11],[12] of masses Mg, Mg and distance pg and
ps We can say that

‘F:E«" = QF,q,

In the book ([1], p.149) we find:

But that result contradicts to the aspects in the nature and also to the laws of
classical mechanics. In the book “Physics and Astronomy of the Moon”, ([2], p. 9)
1s written: “The lunar theory-one of the biggest problems of the celestial mechanics-
and developed differently than other planet theories.” At the seminar for mechanies
of Mathematical Faculty of Belgrade University, that was held on 4 March 2003
astrophysicist A.Tomié¢ noticed that it is possible, by the formula (3.20) from the
book Vujicié [1], and paper [19], to solve the problem of the centuries, problem of
the paradox in theory of the Lunar orbit.

The author of this paper suggests the solution of Dynamic of paradox in theory
of Moon’s motion, from the point of view of the classical mechanics of two material
point. Analytical proofs are closed to the facts that can be found in the scientific
literature. Digression from completely true facts, if those facts exist at all, does
not influence the author’s conclusion - that the force of Earth’s attraction of the
Moon is larger than the force of the Sun. We have to start from the formula (3.20)
considering the fact that the eccentricity of the Moon's and the Earth’s path is
small, so we have to considered the motion along the circular path in the ecliptic
plane. We suggest one solution for dynamic paradox of theory of the Moon's motion
from the point of view of the classical mechanics. Discrepancy from exact tfact, if
theory really exist, does not is influence the anthor’'s conclusion - that the Earth’s
force of the attraction is larger than the force of the Sun.

Tending to prove this, the author thinks that it is necessary to mention some
deportment of the analysis and classical kinematics.

The second derivative ¢ of radius vector r(t) with time ¢, in the natural system
of the coordinates (see for example [15], p. 34) is

d*r ds d%s

— = K(=)ng+ —70, (4.2)
d-t2 dt ) 0 dfz 0, \ )
where: K is the curvature of the curve in the point #; v is magnitude of the velocity
vector, and dv/dt = d%s/dt® is tangential acceleration in that point. We can, also,
find this in kinematics, where ¢ is time, as independent variable, ([16], p.30),

(4.3)

where v/ R}, is magnitude of normal acceleration.
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So we can say that the magnitude od acceleration in any point of the path is

. dv. 2 v2 .
=+ (5 + (=2 4.4

By multiplication the relation (4.2) or (4.3) with the unit vector rg = r/r, we get
radial acceleration

a2 | 2 2
4 rE— v dv v .
wp = 17 = ECOS".,‘J‘ + R—kSlDfp; R{\- 5 R_;;" f-l-'j]

where the angle ¢ is made by the tangent and the radius vector. The relations (4.3)
and (4.4) show us that acceleration vector is in the plain, as those basic vectors pe
and n,. In relation to plane coordinate system p.#; p,,8, the velocity has radial p
and transversal component pf

Acceleration radial has the form

Dp . : .
wp =gy =~ pf? (46)

because it is
v? =2 4 p?62. (4.7)

Vice versa is valid proot, also. It is well known that acceleration radial responds to
the covariant derivation by the time from the radial velocity p, e.g.

o Db o PO
H-p—E—P—P =p—- p'

2 — p? is from, we get the

Considering (4.7), where 9292 =v
-2 - 2

+pp—v \

jp= L TP~ Yor P;’ o, (4.8)

In the literature of mechanics and physics ([9], p. 194), is shown what is the size

of the radial acceleration at the circle movement on the different height above the
Earth by the formula

T=9"5>
pﬂ

and by the formula



and that can be used, on satellites on the circle paths around the Earth.

Altetude Velocity Acceleration Acceleration
H km v km/s " ¥*

0 7,91 981,0 082,3

100 7,84 048, 9 950,0

1000 7,35 732,1 733,0

10000 4,93 148, 4 148,4
100000 1,94 3,5 3,5

384400 1,02 0,002693 0.002670

The last type of this table is in the relation from the moon’s motion on the
distance p = 384400 km to the center of the Earth.

Two bodies. It is proved that the gravity force of two bodies, which have
volumes i and mso, and which move according to the Newton's axioms, on the
distance ro —ry = p between their's center of masses can be written, in the form
(3.6). Projection of that formula (3.6) on the axis of the vector p, can be obtained
as scalar product the equation (3.6) and vector

Po=—
P

in the form (3.7), where vor is the velocity of one body for this problem,
Vor = Uy — V1. (4.9)

In relation to Descartes’s system of coordinates that is shown as

Vor = \/(;i.’g — @124 (Fa— 1) (4.10)
We have to mention that F' =0, if it 1s %é =0,—p= pég and also it is

Db_ p p_ mame ¥

— (4.11)

my +ma p ’

it p = const.

A possible solution of the problem. Average velocity of the Earth, [10],[11],
ve = 29.84 km/s; distance between the Earth and the Moon is p = 384400 km. The
velocity of the Moon is v = 1.02km/s; mass of the Earth is Mg = 5.97 x 10# kg
and mass of the Moon m = 0.0739 x 102 kg. By changing in the formula we find
out that gravity force by means of which the Earth attracts the Moon with is the
same as

Mgm 2,

Fp = ——2T Yor _ () 987839 -

_ (vg +1.02 —vg)
Mg +m pg 384400

2
=0.0026736m, (4.12)
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because

M
Mo _ 987830878,
Mg +m

We can obtain proper force of the Sun in the same way. The formula of the force
(4.11) between the Sun and the Moon is

. Maom o2, o

Fo = Mot mopy (4.13)
where is M

2 =10.999999.

Mo +m

In the book ([8], p.167) is written: “All stars in our group of stars, including the
Sun, move toward each other at mean deviation velocity of 30km/s, e.g. that is
the velocity of our planet along it's path.”

In the book ([21], p. 80 and 383) of the advanced mathematical level, the
velocity ve of the Sun in space 1s more precisely defined. In the system of galactic
coordinates of aper | = 24° b = 22° the generally adopted velocity of Sun is
ve = 20 km/s.

In the scientific literature: Kulikovskij, ([22], p.78), [23] we can see that those
speeds respond to the velocity of the Sun v = 29.6 km/s to the centroid of 1214
stars to the galactic apex L = 597 B = 26°. For standard motion the velocity of
the Sun is 19.5 km/s; L = 56°, B = 23°.

Let’s caleulate the Sun’s force gravity Fp, for the last two velocities:
Vor1 = Up — Vg = (vg + 1.02) — 29.6 = 20.8 +1.02 — 29.6 = 1.22km/s;

Voprz =vpr — s = (v +1.02) = 19.5 =208 +1.02 — 19.5 = 11.32 km//s.

On the basic formula (4.13) it is obtained:

. 1.222 e
JF-E_.l = Dggggggm?ﬂ =9.9491968 x 10 m.,
Fea=0 999999&??1 = 0.85656688 x 10~%m

SR 1496 x 106~ '

It is obvious that the gravity force Fg of the Sun is larger than the force of the
Sun;

Fo = 268.670F 1,

and

Fo =3122F.,,

or generally

F%H = JF;;_..



Elliptic motion. Considering the fact that elliptic path of the Moon is similar
to the circular path, this approach is enough for rejection “the paradox of the
Moon's motion”. Nevertheless, we are going to show this for elliptic path, too. For
keeping the Moon on the elliptic path we need to have radial acceleration, along
the radius p between the mass centers of the earth and the Moon is zero, or

w, = p— pb* =0,

e.g. that is ]

p= ph?, (4.14)
because transversal acceleration, considering the third Newton's axiom is equal to
zero,

. co1d .-
2p0 = ——p*0 = 0.
P+ 2p S@t’

It follows

2mwab
20 _ _

where T sidereal period of Moon's revolution. In continuation from equation (4.14)
is obtain:
e 4r?a?1? _ 4r? (1—e2
(AaaaiT W el

As the eccentricity of the Moon e = 0.0549, we get for acceleration g = 0.00271366,
that 1s close to g = 0.002709937, that we received for the circular motion. Consid-
ering the fact that the eccentricity of the Earth is e = 0.0168, less than the eccentric-
ity of the moon, and the better correspondence with the acceleration 0.000006959
1s achieved. So, the problem of the paradox of the Moon's motion, is solved.

The Newton's task of determination of force, by which the Sun and the Earth
are acting to the Moon’s motion, using the classical perturbation theory, belongs
to the problems of three bodies; such solution is proposed at the other place. Thus
it should be taken into consideration that also in the perturbation theory there are
disagreements. Let’s then present our contribution to that theory.

5. ON STABILITY OF MOTION

In the referential literature about bodies’ motion the differential equations of
disturbed motion do not always imply the same thing, regardless of the fact that
the term is general. In the general theory of planet disturbances, these are, in the
most general sense, differential equations of motion (See, for instance, ([28, p. 53])

Ty = Fu + Gy (5.1)

which the disturbance forces are added to. While desecribing the system’s motion
by means of equations (3.A) and (3.B), when forces @} are absent, the equations
of disturbed motion are found in the form of variation, [25]:

d 2H . 9H
P Agidgt ¢ dp;oq

dt ispj!
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. RH . 92H
&7 = oot ¥ Bpy0p P

In the motion stability theory, the differential equations of disturbed motion are
reduced to the general form:

®_see. cer (5.3
dt

Equations (5.1) essentially differ from the other given ones; they serve as the basis
for elaborating the whole theory of the planet disturbances. All the other above-
given systems of differential equations of disturbances are formed of the basic dif-
ferential equations of motion by being developed into the degree order or by varying
the functions and their derivatives.

In [26] it has been proved that the vector projection variation is not equal to the
variation vector projection; thus, instead of equations (5.2) the covariant differential
equations of disturbance are derived in the form

D — altn.©), (5.4)
3
% = a.a’g-qa. (5.6)

Invariant Criterion of Motion Stability. The concept of the invariant cri-
terion implies general measurement standard in all the coordinate systems for es-
timating stability of some undisturbed mechanical system’s motion. As such, it
comprises stability of the equilibrium position and state, stability of stationary
motions and, in general, of motion of mechanical systems whose disturbance equa-
tions are of coordinate shape [1] and [27].

If for the differential equations of disturbance (6.21)-(6.22) there is such a posi-
tively definitive function W of disturbance £°, ... & and time t that the expression
is

aw s aw .

W-I—a ! (‘I’Q-F@) ?}320 (5.6)
smaller or equal to zero, the undisturbed state of the mechanical system’s motion is
stable.

If neither forces F}, and F from relations (5.6) nor differences F} — F, depend of
time t on position r and velocity v, function ¥, will also be explicitly independent of
t. Then function W should also be looked for only in its dependence on disturbances
0.6, . ¢m that is, W = W (€% £1,..., €M), so that expressions (5.6) and (5.9)
are reduced to

oW \
a®? (q:a + &?) ng < 0. (5.10)
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It the mechanical system’s constraints do not depend on time, ¢, &%, 1o, ¥o, vanish,
so that expression (5.6}, that is (5.9), is reduced to

aw i aw
W—FGJ (\I'-,,—Fa—‘sl)?b EO\

while expression (5.10) is reduced to

o aw
i (\IL‘,' + 8_5“‘) n; <0

where ¥; and W do not depend on £° and 5°.

All the expressions of the previously given criterion for the equilibrium state
stability appear as consequences of expression (5.9) if £ and 5 are regarded as
disturbances of equilibrium state g and p.
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