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Summary. The theory of right solutions of dynamics equations for 
mechanical systems with sliding friction in one-degree-of-freedom kinematics 
pairs, which has been developed by the authors, is considered. Some 
difficulties bound up with “non-uniqueness” of motion in course of description 
of such systems, which are known as P. Painlevé’s paradoxes, are discussed. 
Some causes of occurrence and possible ways of overcoming these difficulties 
revealed on the basis of analysis of equations of motion are indicated.  
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1 INTRODUCTION AND PROBLEM STATEMENT 

1.1. History of the issue.  
 
For the first time the problem on the possibility of development of a general theory for 
the systems with friction, which would be similar to the theory based on Lagrange 
equations as regards to the systems without friction, was stated by P. Painlevé in his 
publication “Lectures on Friction” [1]. In this work P. Painlevé introduced a general 
definition of friction forces for the systems of absolutely rigid bodies, and the issue of 
consistency of links was considered. When describing general properties of friction 
laws, P. Painlevé indicated to the fact that these are rather rough empirical laws and 
may be applied only within some definite boundaries, while for large values of friction 
coefficients application of Coulomb’s laws leads to uncertainties. These  phenomena 
known as “P. Painlevé’s paradoxes” for dry friction provoked a discussion, in which 
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many outstanding mechanicians of that time participated: L.Lecornue, De Sparre, F. 
Klein, R. von Mises, G. Hamel, L. Prandtl, F.Pfeiffer (see [1]), E.A.Bolotov [2] (see 
also [3]), later – N.V. Butenin [4], N.A. Fufayev [5], Yu.I. Neimark, [6],[7], [8], A.P. 
Ivanov [0], V.V. Nickolsky, Yu.P. Smirnov [11], [12], [13], S.S. Grigoryan [14], S.V. 
Belokobylsky [15] et al. A detailed survey of the respective publications can be found 
in the monograph by Le Suan Ane [16].  But presently the works devoted to analysis of 
P. Painlevé’s paradoxes are of discussion character. 

Note, paradoxes revealed by P. Painlevé are explicated not in the physical nature 
of friction but in techniques of its description by methods of theoretical mechanics. 
These outstand in the possible contradictory character of equations of motion of 
mechanical systems with friction on the basis of both the assumption of absolute 
rigidity of contacting (interacting with friction) bodies and the Coulomb’s law. P. 
Painlevé himself has made a conclusion that “there is a logical contradiction between 
the rigid body dynamics and the Coulomb’s laws, which is realized under the conditions 
which may be realized in reality” [1]. Nevertheless, application of Coulomb’s laws 
under the assumption of absolute rigidity of bodies interacting with friction is 
considered as justified and has been efficient in many cases in practice. 

 
Friction is a complex physical phenomenon, which is still insufficiently 

investigated. Laws of friction were studied by Leonardo da Vinci who discovered that 
when a body moves along a horizontal surface, it experiences the force which obstructs 
the motion and depends on the body‘s weight. The same conclusions were later made 
by G. Amonton. He supposed that the force of friction does not depend on the velocity 
of relative motion of the bodies interacting with friction. S.O. Coulomb introduced the 
concept of friction coefficient and concluded that its value is dependent on the material 
and on the state of surfaces interacting with friction, but does not depend  on the surface 
of contact. The formula =F fN  is known as the Admonton-Coulomb law. 

 
Coulomb investigated the force of friction in cases of very slow reciprocal 

motion of bodies interacting with friction. But already in the XIX century it was found 
out that the force of friction depends on the relative velocity of contacting bodies. It 
was discovered:  the force of static friction (at the moment of beginning of motion) 
differs from the force of friction in the process of motion (larger) in the zone of very 
low velocities. Friction coefficients are dependent not only on the materials, but also on 
smoothness of the surfaces, which always have some irregularities. So, in reality, the 
surface of contact of the bodies interacting with friction is relatively small. Resistance 
of these contact zones is right the source of friction force. In the case of relative shift, 
there takes place not only sliding but also elastic (Hookean) deformation of microscopic 
bulges on contacting bodies. In the case of very low shifts, a substantial role belongs to 
elastic resistance and to the force which shall be subject to Hooke’s law. All these and 
other peculiar properties of friction only add to the conclusion made by P. Painlevé that 
Coulomb’s laws may be applied within definite boundaries and under definite 
conditions.  

 
Before giving a brief characteristic of the main directions of investigations  of 

systems with friction consider an example of P. Painlevé. This is not an exceptional but 
a rather general case when the friction coefficient values are large. Such an example has 
been analyzed in detail in [17]. 

 
Consider two material points of unit mass, which are linked by a weightless rod 

1MM  of length > 0r . Some point M  is sliding with friction along an immovable 

horizontal straight axis Ox , which it cannot leave, and has a coordinate x , and another 
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point 1M  is moving without any external resistance in a vertical plane Oxy  under the 

effect of the gravity force g  (and reaction of the rod). Axis Oy  is directed 
downwards, θ  is the angle of deviation of the rod from the positive direction of the 
axis Ox  clockwise. The coefficient of friction > 0f  is considered to be positive. The 
external forces acting upon the system are the complete weight 2g , applied to the 
center of gravity G , and the reaction R  of the axis Ox , whose components along the 
axes Ox  and Oy  will be denoted as xR  and yR . The equations of motion and the 

equations for the normal reaction yR  write: 
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The absolute value of the tangential reaction xR  for 0x ≠&  (the force of sliding 

friction in motion) is yf R  and has the sign opposite to that of velocity x&  of point 

M , where > 0f  is the friction coefficient (a constant value). Therefore, according to 
Coulomb’s law, in case of motion with 0x ≠&  we have 

=y yR f R sgnx− &       (2) 

Let 00 < < 2θ π . Having chosen the sign of velocity 0x&  and the direction of 

the force of normal reaction yR  (i.e. getting rid of the sign of yR ), we obtain a 

system of linear equations with respect to the reaction yR  and the accelarations θ&&  and 

x&& . Analysis of these equations shows that under definite conditions applied to the 
friction coefficient f  these have no solutions for 0 > 0x&  (the paradox of impossibility 

of motion), and for < 0x&  there are two possible cases satisfied, which do not 
contradict to the law of friction (2) (the paradox of nonuniqueness). 

 
Already in course of above discussion they formed a direction of investigations 

of systems with friction, which presumed introduction of physics hypotheses which add 
to Coulomb’s laws. 

 
The idea of taking account of elasticity of real bodies was put forward by L. 

Lecornue  after initiation of the discussion. He was sure that the force of friction 
appeared not immediately and the friction coefficient grew from zero to the value, 
which corresponded to the Coulomb’s law value, during a very short time interval, i.e. 
he took account of the tangential elasticity of interacting bodies. Nowadays the L. 
Lecornue  approach has been developed in [15]. 

 
F. Klein and L. Prandtl tried to circumvent the contradictions by assuming the 

admissibility of infinite accelerations, i.e. at the expense of instantaneous change of the 
velocity (within the frames of the hypothesis of absolutely rigid body). Actually, this 
may imply a very fast halting of the body, which, in particular, expresses the hypothesis 
of instantaneous braking. As the discussion developed, L. Prandtl and F. Pfeiffer 
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proposed also to take account of the normal elasticity of bodies in the contact zone. The 
investigation was conducted on the system which included two material points linked 
by an elastic rod and moving along parallel directions. One of the points experienced 
friction. This example was completely investigated, and no paradoxes arised. Now there 
appeared the possibility to investigate the behavior of the system’s solution side by side 
with the increase of elasticity (to perform the passage to the limit). The papers [4] and 
[18] realized this idea. But it is difficult to investigate limit equations in in the general 
form (without any idea of the solution in its analytical form). These difficulties are still 
unresolved. Moreover, in the general case, it has not been strictly grounded that the 
P.Painlevé contradictions can be resolvede on account of elastic (Hookean) 
deformations in the contact zone. 

 
The account of elasticity leads to the necessity of considering differential 

equations with a small parameter with the elder derivatives. The theory of A.N. 
Tikhonov was applied in [5], where the value inverse to the elasticity coefficient was 
considered in the capacity of the small parameter. 

 
In [14], an approach based on replacement of the Coulomb’s law with another 

“physically real law with a distributed value of the friction force, which is achievable 
under large values of the normal force on the surface of friction” was proposed. That 
was grounded by the fact that in rigid body mechanics and in mechanics of deformable 
bodies normal pressures may be arbitrary large, while the tangential impacts (forces of 
friction) on the surface of contact of the bodies may be restricted by he factor of their 
stength. 

 
A hypothesis of tangential impact, which added to the Coulomb’s law 

(instantaneous selfbraking) was investigated in [9]. . 
Other investigations in this direction are also known. These are related to 

investigation and explanation of P. Painlevé’s paradoxes, which are considered via 
definite examples of systems with friction. 

 
The publications [11], [12], [13] develop the method of rejection of irrelevant 

solutions and choosing the “true” motion of possible ones at the expense of 
consideration of systems having bilateral holding links. The authors have proposed the 
principle of invariance of the links for the systems of absolutely rigid bodies with 
vanishing small clearances in the holding bilateral links. Different variants relace one 
another in the process of motion. It is necessary to choose the noncontradictory motion 
from possible ones, which would be unique with respect to the signs of normal 
reactions – i.e. the "true motion". The paradox of non-uniqueness of motion here results 
from multi-variant character of contacts between bodies. The paradox of impossibility 
of motion results from the absence of a non-contradictory variant of links. These ideas 
go back to investigations of P. Painlevé. But there arise substantial difficulties in the 
process of investigation of friction for rotating motions, because there appears some 
quadratic dependence of the friction force on normal reactions. 

 
The discussion, which was initiated over a hundred years ago, is under way. 

Mechanicians of different schools and research directions participate in it. But still there 
are results explaining Penleve’s paradoxes, which might be recognized as canonic ones. 
It is still unknown in what degree different investigations correlate or complement one 
another. The comparative analysis is practically impossible.  

 
For example, in [8] it is affirmed that there is no limit dynamics, which 

corresponds to the transition to an absolutely rigid body when the regulation parameters 
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tend to zero. The conclusion is made that it is expedient to relinquish the hypothesis and 
the problem of choosing “true motions in paradoxical situations” in mathematical 
models of systems with friction. Instead, it is necessary to solve the problem of 
“model’s completeness”, which implies the need to construct a minimum sufficient 
correct model in a paradoxical situation. 

 
Such an attention to friction paradoxes is mainly bound up with the tendency of 

researchers to construct a complete and non-contradictory theory of systems with 
friction. But the object of investigations is one of the most complex ones concerning its 
nature, and probably the point is hardly ever expected in future. 

 
Meanwhile, investigations of systems with friction within the frames of 

analytical mechanics of systems with friction are not reduced to analysis of 
contradictions. There are fundamental works of P. Appel [19], [17] , A.I. Lurye [[19] 
N.G. Chetayev [21], V.V. Rumyantsev [22], G.V. Pozharitsky [23], [24], [25], in which 
the Euler-Lagrange principle of possible transitions, the method of Lagrange and the 
Gauss principle of the least compulsion  are applied (extended) to the systems with 
friction. The publications [26]], [27], [27], [29], in which the theory of of systems with 
dry friction is developed (without any account of the possibility of occurrence of P. 
Painlevé’s paradoxes), are to be noted. Note also rather interesting and pithy surveys 
related to friction [31], [32]. 

 
In conclusion of this section we have to note another peculiarity in description of 

systems with friction: the force of friction is a discontinuous function of velocity, and 
so, motion of systems with Coulomb’s friction is described by differential equations 
with discontinuous right-hand sides, the theory of which is presently well developed 
(see [33]). This circumstance adds substantial but purely mathematical difficulties 
related to investigation of equations of motion for the systems with friction. It is not 
related to P. Painlevé’s paradoxes: P. Painlevé’s paradoxes are revealed in the domains 
of continuity of right-hand sides of the equations of motion. Note also, differential 
equations with the discontinuous right-hand side were for the first time considered right 
in the dynamics of mechanical systems with Coulomb’s friction in the works of P. 
Painlevé and P. Appel. 

1.2. Some general remarks of sliding friction.  

Consider some known concepts and information related to systems with sliding 
friction (see [17: P.107]), which will be used in description of friction forces. 
Imagine two moving rigid bodies A  and B , body A  slides along body B , m  is the 
point of touch. N  is the normal reaction of body B  onto body A , i.e. the force 
directed perpendicularly to the surfaces touching at point m , F  is the force applied to  
the same point m  and acting in the plane tangential with respect to the touching 
surfaces. Force F  is said to be the force of sliding friction. It is acts in the direction  
opposite to the relative velocity of point m  with respect to B  and is equal to fN , 
where f  is the friction coefficient, and N  is an absolute value of the normal reaction. 
Therefore, the force of sliding friction can be determined in the process of motion, 
when values of f  and N  are known. The friction coefficient f  is determined 
experimental and is dependent on the nature of touching surfaces. Note, the friction 
coefficient at rest is somewhat smaller than that in case of motion. In this case, 
following [1], we consider these coefficients to be equal. 
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What happens if the relative velocity of point m  with respect to body B  turns 
zero, i.e. the sliding motion terminates? In this case, either body A  remains immovable 
with respect to body B , or the relative motion is represented by the rolling motion, and 
the laws of sliding friction n motion may not be applied. Having neglected rolling and 
turming kinds of friction, let us formulate a general principle of defining the force of 
sliding friction in the state of relative rest, i.e. at the moments of termination of sliding 
motion. 

 
 Suppose, the relative velocity of point B  at the initial time moment 0t  is zero. 

It is necessary to find out what kind of relative motion of body A  along body B will be 
realized at the following time moments 0t t> . In order to answer this question let us 

behave as follows: assume that when 0t t>  the velocity of point m  remains zero. 

Hence, on account of above laws, the reaction of body A  on body B  will be 
comprised by the normal reaction N  and the tangential reaction F . It is assumed that in 
this case laws of friction in the state of rest may be applied, and so, the inequality 
F fN<  shall hold. Under these conditions let us formulate equations of the problem 
and compute the values of N and F . If indeed the value of F  obtained turns out to be 
smaller than fN , then the assumption is plausible, i.e.: the relative velocity of point 

m  at 0t t>  is zero, and F  is the force of sliding friction at rest. This statement is 

plausible until the value of F becomes larger than fN . Beginning from this moment, 
there will take place the process of sliding, and the equations will have to be changed. 
If, vice versa the value of F  obtained will from the very beginning be larger than fN , 

then the assumption (that the velocity of point m  at 0t t>  is zero) made before is 
false, and sliding motion is hardly ever possible. From the very beginning it is 
necessary to write equations of motion, while applying laws of sliding friction not at 
rest, but for the case of motion. 
 
 In his case, when sliding friction takes place both before the moment of 
stopping 0t and after this moment, according to the law of friction in motion, after the 
change of the direction of motion to the reverse of one, the friction will change the sign 
to the opposite one, i.e. a stepwise change of the friction force (noted above) will 
happen. 
 
 Above reasoning is rather schematic and general. In concrete situations, it is 
insufficient to derive only equations of motion in order to determine the friction force. 
If active forces, which influence the system, are known, then the reactions of the links 
have to be computed and analyzed. When there are many points of friction interaction 
of bodies all above considerations have to be applied with respect to each of the points. 
The method of determination of the reactions of friction interactions is considered in the 
next section. 
 
1.3. General equations of motion of systems with one-degree-of-freedom kinematic 
pairs with friction.  
 

Our investigations are conducted within the frames of classical rigid body 
mechanics.  
Considered are Lagrange II-kind equations, which describe motion of systems with 
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Coulomb’s sliding friction, with ideal (perfect) nonstationary holding links. As noted 
above, according to Coulomb’s laws, generalized forces of sliding friction may be 
expressed via friction coefficients and modules of normal reactions at the points of 
contact between two bodies interacting with friction. The latter are written via the 
generalized reactions of the friction links, which are not known in advance.  In the 
present paper we propose and approach, which is based on consideration of Lagrange 
equations with multipliers and excessive generalized coordinates и избыточными 
обобщенными координатами and under the condition of conceptual liberation of the 
initial system from the links, which cause the reactions to be found (see [19]). As a 
result, we obtain an "extended" system of equations, which – in the capacity of 
unknown functions – includes not only the system’s solution but also generalized 
reactions of the friction interactions. Since the modules of normal reactions are 
nonlinear functions, the generalized reactions of the friction interactions are given by 
such equations inexplicitly. Solution of such systems "extended" with respect to 
systems’ generalized accelerations is not always possible and not always unequivocal. 
This is just what P. Painlevé’s paradoxes are explicated in, and their investigation 
acquires a purely mathematical character. 
 

 Let us consider the approach discussed above in detail. Let there be given a 
mechanical system with k  degrees of freedom, in which Coulomb friction forces act on 

*k k≤  kinematic pairs described by the generalized coordinates 1 *, , kq qK . For the 
purpose of liberation of the system from interactions bound up with friction, let us 

introduce *
*k k≥  additional generalized coordinates 

*1
* *, , kq qK , which are chosen 

such that equations of "broken" links (interactions) would have the most simple form: 
 

*
* = 0, = 1, ,jq j kK              (1) 

 
The residual links (interactions) without friction have been retained and are 

assumed to be perfect, holonome, and, generally speaking, nonstationary. 
 
Introduce the denotations: ( )1= , , kq q qK , ( )*1

* * *= , , kq q qK  are vectors of 

generalized coordinates of the initial system and additional generalized coordinates; 

( )1 *= , ,
k

N N N′ ′ ′K  is the vector of generalized reaction forces of "broken" links 

(interconnections). Such signs as “one dot” and “two dots” on top of the symbols of 
generalized coordinates denote, respectively, the first and the second derivatives with 
respect to time. 

 
The kinetic energy *a

T  and the generalized forces *
iQ  are composed for the 

system liberated from links for the joined vector of generalized coordinates 

( )*1= , , k kq q qσ σ σ
+K  (i.e. = ( = 1, , )i iq q i kσ K , 

*
*= ( = 1, , )i i kq q i k k kσ
− + +K ). According to the assumption, *a

T  represents a sum 

of positive definite form of generalized velocities, of the linear form of generalized 
velocities iqσ&  and of function ( )* *

0 0= ,T T t qσ : 
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( ) ( ) ( )
* * *

*
* * *

0
=1 =1 =1

1= , , ,
2

k k k k k k
i j i

ij ia
i j i

T a t q q q a t q q T t qσ σ σ σ σ σ

+ + +

+ +∑∑ ∑& & & . 

 
The functions ( )* ,ija t qσ , ( )* ,ia t qσ , ( )*

0 ,T t qσ  are assumed continuously 
differentiable with respect to the set of its arguments. 
 

Equations of motion for the "extended" system in Lagrange form may be written 
as follows: 

* * *= , = 1, ,a a
ii i

T Td Q i k
dt q q

∂ ∂
−

∂ ∂
K

&
          (2) 

* * * *

* *

= , = 1, ,a a
k j jj j

T Td Q N j k
dt q q +

∂ ∂
′− +

∂ ∂
K

&
        (3) 

 The generalized forces *
iQ  have the form ( ) ( )* ** = , , , , ,A T

i i iQ Q t q q Q t q q Nσ σ σ σ ′+& & , 

*= 1, ,i k k+K , where 
*A

iQ  are generalized active forces acting on the system (potential 
forces; forces of resitance of the dampers, the environment; disturbing and controlling 

forces of any physical nature, forces of radial correction); ( )*

, , ,T
iQ t q q Nσ σ ′&  are 

generalized friction forces. It is supposed that the work of friction forces on the virtual 
transitions along additional generalized coordinates is zero. 

 
When considering equations (2), (3) consistent with the equations of 

interconnections (links) (1) and substituting the values of * 0jq = , * 0jq =& , * 0jq =&& , 
*1, ,j k= K  into them (due to equations of links), we obtain *k k+  equations 

needed for defining the generalized coordinates 1, , kq qK  and the generalized 

reactions of interconnections with friction *1, ,
k

N N′ ′K  (in the domain related to 
determination of frictions forces). In the expanded for these equations write as follows: 

 

( ) ( ) ( ) ( ),
=1

, = , , , , , , , , = 1, ,
k

s A T
i s i i i

s
a t q q g t q q Q t q q Q t q q N i k′+ +∑ && & & & K        (4) 

( ) ( ) ( ) *
,

=1

, = , , , , , = 1, ,
k

s A
k j s k j k j j

s

a t q q g t q q Q t q q N j k+ + + ′+ +∑ && & & K        (5) 

 
where ( ) ( )

* *

*
, , 0, 0, = ,l s l s q qa t q a t qσ = =& , *( = 1, , , = 1, , )l k k s k+K K  are are the 

coefficients of the quadratic form of generalized velocities lqσ&  from the expression of 

the kinetic energy *a
T  under the condition that * = 0q ; 

( ) ( )*

* *0, 0, , = , ,A A
l q qQ t q q Q t q qσ σ = =&& & , *( = 1, , )l k k+K  are generalized active 

forces; ( ) ( )
* *

*
0, 0, , = , ,l l q qg t q q g t q qσ σ = =&& & , *( = 1, , )l k k+K  are continuous 

functions, which characterize generalized gyroscopic forces, and some other terms 
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under the condition that * 0q = , * 0q =& . 
 
The system (4), (5) represents a specific system of 2nd order differential 

equations with the discontinuous right-hand side, in which the generalized reactions of 
interconnections (links) ( )iN t′  and the system’s motion ( )iq t  are unknown 

functions. This system may be called algebraic-differentiable, except for the only 
difference that functions ( )iN t′  aare included in it without their derivatives. 

 
Let us use the group of equations (7) to express reactions of interconnections 

(links) via the generalized accelerations and substitute them into equations (6). As a 
result, we obtain the equations of motion in their vector and inexplicit form: 

 

( ) ( ) ( ) ( ), = , , , , , , ,A TA t q q g t q q Q t q q Q t q q q+ +&& & & & &&        (6) 

 
Friction forces in this system are dependent only on the velocities. And the 

question may arise: whether this approach takes the problem beyond the frames of 
Newtonean mechanics, in which any dependence of forces on accelerations is 
inadmissible, or not. In this connection note that equations (6) represent just a form 
recording the initial "extended" equations of motion in inexplicit form. Note also, the 
forms of recording equations of motion for the systems with friction represent another 
special objective of investigations. 

 
Friction forces in this system are dependent only on the velocities. And the 

question may arise: whether this approach takes the problem beyond the frames of 
Newtonean mechanics, in which any dependence of forces on accelerations is 
inadmissible, or not. In this connection note that equations (6) represent just a form 
recording the initial "extended" equations of motion in inexplicit form. Note also, the 
forms of recording equations of motion for the systems with friction represent another 
special objective of investigations. 

 

1.4. Generalized forces of sliding friction.  

Let the interconnections (links) and the generalized coordinates 1, , kq qK  

are such that each of the generalized friction forces T
iQ  depends explicitly only on one 

respective generalized velocity iq&  and on normal reactions iN ′ . The latter can be 
expressed from equations (5) as functions of time, generalized states, velocities and 
accelerations. According to Coulomb’s laws, in the process of motion with  generalized 
velocities ( ) 0sq t ≠& , * *( = 1, , , 1 )s k k k≤ ≤K , generalized sliding friction firces 

T
iQ  are expressed by the formulas 1 =T s

s s sQ f N sgn q− & , *( = 1, , )s kK  via 

friction coefficients (in motion) sf  and modules of normal reactions. The modules of 

normal reactions are expressed by the equalities: =s sN N ′  in the process of 

sliding with velocity sq&  along the surface * = 0sq , = 1, ,s k′K , *0 k k′≤ ≤ ; 

2 2=s j 'j
N N N′ ′+ , when sN  is obtained by adding mutually orthogonal reactions 
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of smooth interconnections (links) * 0jq = , * = 0jq ′  with the absolute values jN ′ , 

jN ′′ , *= 1, ,s k k′ + K , *, = 1, ,i j k k′ + K  for the case of rotation of the body 

about the axis = 0jq , = 0jq ′  or for the case of sliding of a point along a spatial 
curved line. 

 
Note, functions sN  are continuous with respect to q&& , and for 0sN ≠  – 

continuously differentiable with respect to q&& . 
 
So, in case of generalized forces of sliding friction in motion  we have в 

движении 

  ( ) ( )1
*= , , , , , если 0, = 1, ,T s s s s

s s sQ f t q q N t q q q sgnq q s k− ≠& & && & & K  (7) 

Let now the velocity of sliding friction of the body interactiong with onother one 
with friction at some time moment is zero. According to the laws of classical 
mechanics, let us suppose that the friction coefficients ( )0 , s

sf t q  for the case of 

relative rest are equal to the coefficients of friction in motion, i.e. 

( ) ( )0 , = , , 0s s
s sf t q f t q , *= 1, ,s kK . 

 
Next, we act according to the scheme discussed in Section 1.3 for the purpose of 

determination of friction forces in caseof relative rest. If ( ) = 0sq t& , where the index 

is *1 s k≤ ≤ , then we obtain = 0sq&&  and can compute the generalized force of sliding 
friction in case of relative rest   

                                  

( ) ( ) ( ) ( )0

0
=1,

, , , , , , , , s

k
T j A
s sj s s q

j j s
Q t q q q a t q q g t q q Q t q q

=
≠

⎡ ⎤− −⎣ ⎦∑ &
& && && & &@ . 

 
When the equality  
 

( ) ( ) ( )0 0
= =0

, , , , , , , s s
T s
s s s q q

Q t q q q f t q N t q q q≤
& &&

& && & &&        (8) 

 
holds, we naturally have = 0sq&&  and ( ) ( )0, , , = , , ,T T

s sQ t q q q Q t q q q& && & && . 

 
In case when inequality (8) fails to hold, the assumption made (that = 0sq&& ) is 

rejected, and it is supposed that 
 

       ( ) ( ) ( ) ( )0, , , = , , 0 , , , , , ,T s T
s s s sQ t q q q f t q N t q q q sgn Q t q q q& && & && & &&     (9) 

 
Hence, for the case of actual system’s motion, inequality 0sq ≠&&  holds, because 

for 0sq =&&  we would have 0 0
= =0

=T
s ss s s q q

Q f N
& &&
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In the general case, we obtain the following expression for the generalized force 
of sliding friction: 
       

( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )

0

0 0
=0

0

0 0
=

, , , , , , if 0,

, ,0 , , , , , , , if = 0,

, , , = , , , > , , , , ,

, , , , if = 0,

, , , , , , ,

s s s s
s

s T s
s s s

T T s
s ss s s q

T s
s

T s
ss s s q

f t q q N t q q q sgnq q

f t q N t q q q sgnQ t q q q q

Q t q q q Q t q q q f t q N t q q q

Q t q q q q

Q t q q q f t q N t q q q

− ≠

≤

&&

&&

& & && & &

& && & && &

& && & && & &&

& && &

& && & &&
0

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

(10) 

 
So, in the present paper we investigate equation (8) with the forces of sliding 

friction, which are defined by formula (10). 
 
Hence there appear the two problems:  
 
1) The problem of unequivocal solving of equations of motion (6) with respect 

to generalized acceleration and reducing them the normal form  

( )= , ,q G t q q&& &             (11) 

2) The problem of development of the general theory and methods for 
investigation of equation (11). 

 
In the present paper we elaborate the theory of right solutions of equations (8). 

The right solution defined on some segment [ )0 1,t t  is understood as a continuous right 

differentiable vector function ( ) ( )( ),q t q t& , which satisfies the conditions  

 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )0 0 0 0

= , = , ,

= , =

D q t q t D q t G t q t q t

q t q q t q

+ +& & &

& &
        (12) 

 
Note, the concept of right solution is to the highest degree corresponding to the 

sense and to the pithiness of the problem under scrutiny. There may exist no classical 
solutions in this case because function G  is discontinuous. At the same time, the right 
derivative of the velocity has the sense of generalized acceleration in mechanics. 

 
The difficulty of investigation of the equation implies that functionG  is not 

only discontinuous, it is inexplicitly assigned. This complicates application of well-
elaborated methods of the theory of discontinuous systems such as the method of 
transition to differential inclusions. So, for the purpose of investigation of the problems 
stated above (within the frames of the theory of differential equations with the 
discontinuous right-hand sides) we have identified and investigated a special class of 
discontinuous systems. The next Part 2 of the paper is devoted to this issue. 
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2 RIGHT SOLUTIONS OF DIFFERENTIAL EQUATIONA WITH 
DISCONTINUOUS RIGHT-HAND SIZES 

2.1. Existence and general properties of solutions.  
Consider  the following differential equation in vector form:  

 
( )= ,x f t x&            (13) 

which has a discontinuous function 1: nf R +Ω→  unequivocally defined at each point 

( ),t x , where 1nR +Ω ⊂  is a domain. 

 
Analysis of equations (6) has given evidence that there is a set properties of 

function G , within the frames of which for equation (13) it is possible to consider a 
sufficiently complete mathematical theory. Generalization of these properties taken in 
the capacity of propositions reveals in essence a new class of differential equations with 
the discontinuous right-hand side, for which it is possible to slove the principal set of 
problems of the general theory (existence, continuability of solutions, their dependence 
on the initial conditions, etc.) and develop methods of the qualitative theory. Such a 
generalized problem statement, on the one hand, allows one to demonstrate what 
properties of scrutinized equations of motion for some systems with friction are the 
most important in the aspect of their investigation by mathematical methods, and on the 
other hand, allows one to directly apply results and methods of investigation to the 
systems of different nature. 

 
The right solution of the initial value problem for the equation (13) on the 

segment [ )0 1,t t  with the initial condition ( )0 0,t x ∈Ω  is understood as an 

absolutely continuous right differentiable function ( )x t , which satisfies the conditions 

( ) ( )( )= ,D x t f t x t+ , ( )0 0=x t x  for all [ )0 1,t t t∈ , where ( )D x t+  is the right 

derivative of function ( )x t . Henceforth, solutions of equation (13) are everywhere 

understood as right. 
 
For each point ( ),t x ∈Ω  the inclusion ( )= , nt x RΓ Γ ⊂  denotes a 

nonempty closed cone (i.e. Γ  is a closed set, and for any number 0α ≥  from the 
condition y∈Γ  it is possible to derive that yα ∈Γ ). The cases of = nRΓ  or 

{ }= 0Γ  are not excluded. 

 
Suppose that 
 

( ) ( ){ }, , : < , <S t x t x t t t x xδ δ δ′ ′ ′ ′≤ + −@ , 

( ) ( ) ( ){ }0 , , : ,t x t x x x t x′ ′ ′Ω ∈ +Γ@ ,

 ( ) ( ) ( )0 0, , ,t x t x S t xδ δΩ Ω I@ . 

 



 
 
 
 
 
 

Vladimir M. Matrosov and Ivan A. Finogenko 
 
 

Suppose also the following conditions are satisfied for the equation (13): 
 
M a i n  c o n d i t i o n s . For each point ( ),t x ∈Ω  defined are the set 

( ),t xΓ  and the real-valued continous function ( ) ( ), ,t xV t x′ ′ , which is Lipschitz with 

respect to x′  uniformly with respect to t′  in some neighborhood ( ),S t xδ , for which 

(including function f ) the following conditions hold: 
 

1. Function f  is locally bounded; 

2. Function f  is continuous at each point ( ),t x  along the set ( ),t xΓ  

right with respect to t′ , i.e. for any 0ε >  there exists 

( )= , , > 0t xδ δ ε  such that ( ) ( ), , <f t x f t x ε′ ′−  for all 

( ) ( )0, ,t x t xδ′ ′ ∈Ω ; 

3. ( ) ( ), ,f t x t x∈Γ  for all ( ),t x ∈Ω ; 

4. The following conditions hold for all ( ) ( ), ,t x S t xδ′ ′ ∈ :  

( ) ( ), , 0t xV t x′ ′ ≥  and ( ) ( ) ( ) ( )0
, , = 0 , ,t xV t x t x t xδ′ ′ ′ ′⇔ ∈Ω ,. 

and if ( ), nt x RΓ ≠ , then there exist numbers ( )0 0= , > 0t xα α  

( )= , > 0t xδ δ  such that ( ) ( )*
, , <t xD V t x α+ ′ ′ −  for all 

( ) ( ) 0, , ( , )\t x S t x t xδ′ ′ ∈ Ω , where 

( ) ( ) ( ) ( )( ) ( ) ( ), ,*
,

0

, , ,
, lim

t x t x
t x

h

V t h x hf t x V t x
D V t x

h
+

→+

′ ′ ′ ′ ′ ′+ + −
′ ′ @ . 

 
Note that at each point ( ),t x ∈Ω  such that ( ), = nt x RΓ  conditions 1–4 

hold if (it is sufficient) function f  is continuous at this point. Note also, function 

( ) ( ), ,t xV ⋅ ⋅  (for the fixed ( ),t x ), which is essentially Lyapunov function, in the 

beginning serves for proving the existence of solutions and only later the expression 

( ) ( )*
, ,t xD V t x+ ′ ′  is considered as the upper right derivative  of the function 

( ) ( ) ( ),, ,t xt x V t x′ ′ ′ ′→  along the solution of equation (13) and is used for 

investigation of stability. Function ( ),t xV  with assigned properties exists and is 

constructed below for the systems systems with friction under scrutiny. 
 
Let us formulate the principal theorems on existence and on properties of 

solutions of equation (13), whle assumeing that the principal conditions are satisfied. 
 
T h e o r e m  1.1.1. For any initial state ( )0 0,t x ∈Ω  there exists a local 

right solution of equation (13). 
D e f i n i t i o n . The right solution ( )x t  of equation (13) is called R  – right 
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when function ( )D x t+  (right derivative of solution ( )x t ) is right continuous at each 

point t  from the domain of definition for ( )x t . 

 
T h e o r e m  1.1.2. Any right solution of equation (13) is R  – right. 
The concepts of continuability of the solution, noncontinualble solution, right 

maximal interval of existence are understood in the general sense.  
 
T h e o r e m  1.1.3. Any solution of equation (13) may be continued onto the 

right maximal interval of existence [ )0 ,t ω  by the initial conditons ( )0 0,t x ∈Ω . Any 

right noncontinualble solution of equation (13) tends to the boundary of set Ω  (i.e. 
leaves any compact subset from Ω ). 

 
Let Λ  be some metric space with metric ( ),d ⋅ ⋅ , and function f  be dependent 

also on the variable λ∈Λ  considered as the parameter. Consider the equation 

( )= , ,x f t x λ&              (14) 

with the function : nf RΩ×Λ→  and the initial data ( )0 0,t x  under the condition 

that 0=λ λ . Assume that for any fixed Λ∈λ  conditions 1–4 formulated above hold 

for the function ( ), ,f λ⋅ ⋅ . As far as dependence of function f  on parameterλ  is 

concerned, suppose the following: for each Λ∈0λ , for any compact set W ⊂ Ω  

and > 0ε  there exists ( )0= , , > 0Wδ δ λ ε  such that the inequality 

( ) ( )0, , , , <f t x f t xλ λ ε−  holds for all ( ),t x W∈  and for the values of 

λ∈Λ , which satisfy the condition ( )0, < d λ λ δ . 

 
The property of right uniqueness of equation (16) means that side by side with 

the increase of t  for the fixed λ  its solutions may merge but cannot branch. 
 
T h e o r e m  1.2.1. Let equation (14) possess the property of right uniqueness, 

( )x t  be the solution of problem (14) with the initial data ( )0 0,t x , with the value of 

0=λ λ  and with the right maximal interval of existence [ )0 ,t ω . Hence for any 

> 0ε  and ( )*
0 ,t t ω∈  there extsts > 0δ  such that any right solution ( )x t′  of 

problem (14) with the initial states ( )0 0,t x′ ′  and with the values of λ′ , which satisfy 

the conditions 0 0 <x x δ′ − , 0 0 0<t t tδ ′− ≤ , ( )0, <d λ λ δ′ , may be continued 

onto the right maximal interval of existence [ )0 ,t ω′ ′ ,  *> tω′ , and (for the 

continuation of ( )x t′ ) the inequality  ( ) ( ) <x t x t ε′ − holds for all *
0 ,t t t⎡ ⎤∈⎣ ⎦ . 

 
Consider some properties of the intehgral funnel of equation (14) without any 

assumption of  right uniqueness. Let the set ( ) ( ){ }0 0: ,t x t xΩ ∈Ω@  be nonempty 
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and ( )0A t⊂ Ω ×Λ . By ( )fH A  we denote the set of all noncontinualble solutions 

)(tx  of equation (14) with the initial data ( )( )0 0,x t Aλ ∈ . Under the assumption 

that all the solutions ( ) ( )fx H A⋅ ∈ are defined on the segment [ )0 ,t a  and *t a< , 

by ( ) *
0 ,fH A t t⎡ ⎤⎣ ⎦  we denote the set of all narrowings of such solutions onto the 

segment *
0 ,t t⎡ ⎤⎣ ⎦ .  

The set ( ) ( )( ) ( ) ( ){ }* *
0 0, , : ,f fA t t t x t x H A t t t⎡ ⎤Φ ⋅ ∈ ≤ ≤⎣ ⎦ @  is 

called a segment of the integral funnel of equation (14), which lies within the band 
*

0t t t≤ ≤ . 
 
T h e o r e m  1.3.1. let the set ( )0A t⊂ Ω ×Λ  be compact. Hence the set of 

solutions ( ) *
0 ,fH A t t⎡ ⎤⎣ ⎦  is compact in the space ( )*

0 ,C t t⎡ ⎤⎣ ⎦  of continuous 

functions defined on the segment *
0 ,t t⎡ ⎤⎣ ⎦  with the topology of uniform convergence. 

The segment of the integral funnel ( ) *
0 ,f A t t⎡ ⎤Φ ⎣ ⎦  is a compact set of space 1nR + . 

 
C o r o l l a r y  1.3.1. Let ( )0 0,t x ∈Ω , 0λ ∈Λ  be fixed, and all the 

solutions of (14) with the initial conditions ( )0 0,t x  for 0λ λ=  be defined on the 

segment [ )0 ,t a . Hence for any ( )*
0 ,t t a∈  and for some sufficiently small > 0δ  

for all 0x′ , λ′ , which satisfy the condition 

( ) ( )0 0 0 0 0, , < , , <t x x x dδ λ λ δ′ ′ ′∈Ω − ,         (15) 

sets ( ) *
0 0, ,fH x t tλ′ ′ ⎡ ⎤⎣ ⎦  and ( ) *

0 0, ,f x t tλ′ ′ ⎡ ⎤Φ ⎣ ⎦  are nonempty, compact (in 

respective spaces), and the multivalued maps 

( ) ( ) *
0 0 0, , ,fx H x t tλ λ′ ′ ′ ′ ⎡ ⎤→ ⎣ ⎦          (16) 

and 

( ) ( ) *
0 0 0, , ,fx x t tλ λ′ ′ ′ ′ ⎡ ⎤→Φ ⎣ ⎦          (17) 

upper semicontinuous at the point ( )0 0,x λ . 

 
Note, upper semicontinuity for the compact multi-valued map (16) means the 

following: for any 0ε >  there exists 0δ >  such that for all the values of ( )0 ,x λ′ ′ , 

which satisfy condition  (17), set ( ) *
0 0, ,fH x t tλ′ ′ ⎡ ⎤⎣ ⎦  belongs to the ε  – 

neighborhood (in the space *
0 ,C t t⎡ ⎤⎣ ⎦ ) of the set ( ) *

0 0 0, ,fH x t tλ ⎡ ⎤⎣ ⎦ . The similar 

statement is valid also with respect to the multi-valued map (17). 
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2.2. The principle of invariance and attraction for autonomous systems.  

 

Consider the following autonomous differential equation 
 

( )=x f x&              (18) 

with the function : nf RΩ→ , defined in some domain nRΩ⊂ . As usually, we put 

0 = 0t . Within the frames of the given section, for the equation (18) we assume that 
the following properties take place:  
 

1°. For any initial state 0x ∈Ω  there exusts a local solution; 

2°. Function ( )f x  is locally bounded; 

3°. The limit of ( )x t  for any sequence of solutions of equation (20) 

uniformy converging on [ )10, t  is the solution of (18) under the condition that 

( )x t ∈Ω  for all [ )10,t t∈ . 

 
These properties follow from the main conditions of Section 2.1. 
 

As far as the solution ( )x t  of equation (18), which is defined on the right 

maximal interval of existence [ )0, ω  is concerned, by  ( )x+Λ  we denote the ω  – 

limit set. Any solution of (18) may be continued onto the right maximal interval of 
existence [ )0, ω . Furthermore, if ( ) 0x+Λ Ω ≠ /I  then =ω +∞ . The set of 

equilibrium positions of equation (18) is closed with respect to set Ω  (i.e. if Ω  is 
considered as a subspace with the metric induced from nR ). The right uniqueness of 
solutions is not assumed. 

 
D e f i n i t i o n . The set F ⊂ Ω  is said to be semi-invariant if for each 

0x F∈  there exists at least one noncontinuable solution ( )x t  of equation (18) with 

the initial condition ( ) 00 =x x , which satisfies the condition ( )x t F∈  for all 

[ )0,t ω∈ . 

 
T h e o r e m  2 .2.1 Any ω  – limit set of equation (18) is semi-invariant. 
Below for equation (18) we formulate the La-Salle principle of invariance and 

preset theorems on attraction with the use of a set of Lyapunov functions. One (the 
main) Lyapunov function provdes for the attraction to the set, on which its derivative 
turns zero. Auxiliary Lyapunov functions provide for attraction to some set, which may 
be represented also by the set of nonisolated equilibrium positions. By ( )w x  we 

denote an arbitrary function with nonnegative values, which is defined in domain Ω . 
Put ( ) ( ){ }= 0 : = 0E w x w x∈Ω@ . 
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T h e o r e m  2 .2.2. Let for equation (18) and for some set M ⊂Ω  there 
exists a finite set of locally Lipschitz functions ( )iV x , = 0, 1, ,i NK , such that 

( ) ( )*
0D V x w x+ ≤ −  for all x∈Ω  and for any ( )= 0 \x E w M∈  there exists  

( )1, ,i N∈ K  such that ( ) = 0iV x , ( )* 0iD V x+ ≠ . 

Hence for any noncontinuable solution ( )x t  of equation (18) the condition 

( )x M+Λ Ω ⊂I holds. 

 
Let us speak that the solution ( )x t  of equation (18) tends to set F ⊂ Ω  if 

( )( ), 0d x t F →  for t ω→ , t ω< , where d  is the distance from the point to the 

set. The solution ( )x t  weakly tends to set F  if there exists a set of points kt ω→ , 

kt ω< , such that ( )( ), 0kd x t F → . By ∂Ω  we denote the boundary of set Ω . 

 
C o r o l l a r y  2 .2.1. Let conditions of Theorem 2.2.2 be satisfied. Hence 

( )x M+Λ ⊂ ∂ΩU  and the following statements hold for solutions ( )x t  of equation 
(18): 

1) either ( )x t →+∞ or ( )x t  weakly tends to set M ∂ΩU  for t ω→ ; 

2) either ( )x t  is unbounded or ( )x t  tends to set M ∂ΩU  for t ω→ ; 

3) if = 0M ∂Ω /U  then ( )x t →+∞  for t ω→ . 

C o r o l l a r y  2 .2.2.  Let conditions of Theorem 2.2.2 be satisfied. Hence: 
1) if = 0M ∂Ω /I  then any bounded solution ( )x t  of equation (18) tends 

either to set M or to set ∂Ω . In particular, if nRΩ =  and M is a set of equilibrium 
positions of system (18), then it is dichotomous; 

2) if set M ⊂ Ω  is compact than either ( )x t →+∞  or ( )x t  is bounded 

and tends to M , or else ( )x t  leaves any compct set from domain Ω  for t ω→ . 

 
For each x∈Ω  we introduce the denotation 

( )
( )

( ),

, ,
=

lim , .w xx x x

w x x
w x

x′′ ′→ ∈Ω

∈Ω⎧⎪
⎨

∈∂Ω⎪⎩
 

 
Let us speak that function ( )V x  is continuous up to the boundary when for 

every point x∈∂Ω  there exists a finite limit ( ),lim x x x V x′ ′→ ∈Ω ′ . Function f  is 

called locally bounded aat the boundary when for any point x∈∂Ω  function f  is 
bounded at the intersection  of some neighborhood x  with set Ω . 

 
T h e o r e m  2 .2.3. Let ( )0V x  be a locally Lipschitz function continuous up 
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to the boundary such that 
( ) ( )*

0D V x w x+ ≤ −            (19) 

for all x∈Ω  and f  is the function  locally bounded on the boundary. 

Hence ( ) ( )= 0x E w+Λ ⊂  for any solution of equation (18) defined for all 

0t ≥ . 
 
T h e o r e m  2 .2.4. Let M ⊂ Ω  be some set, ( )0V x  be a locally Lipschitz 

function contimuous up to the boundary, for which inequality (19) holds. Suppose that 
function f  is locally bounded on the boundary, and that in some neighborhood of sets 

Ω  there are defined continuously differentiable functions ( )iV x , = 1, ,i NK , with 

the property: for any ( )= 0 \x E w M∈  there exists function iV  such that 

0=)(xVi and the following conditions are satisfied 
 

( ) ( )( )
( ) ( ) ( ) ( )( )

0, if = 0 ;

> 0 for all , if = 0 ,

\
\

i

i

D V x x E w M

V x f x f x x E w M

+ ≠ ∈ Ω

∇ ⋅ ∈ Ω

I

I
 

where ( )f x  are limit values of function f  at point x . 

Hence for any solution ( )x t  of equation (18) defined for all 0t ≥  the 

inclusion ( )x M+Λ ⊂ holds. 

 
C o r o l l a r y  2 .2.3. Let conditions of Theorem 2.3.2 be satisfied. Hence the 

following statements hold for the solutions of equation (18) defined for all 0t ≥ :  

1) either ( )x t →+∞ or ( )x t  weakly tends to set M  for t →+∞ ; 

2) either the solution ( )x t  is unbounded or ( )x t  tends to set M  for 

t →+∞ ; 

3) if = 0M /  then ( )x t →+∞  for t →+∞ ; 

4) if set M  is bounded then either ( )x t →+∞  or ( )x t  is bounded and 

tencs to M  for t →+∞ . 
 

2.3. Stability.  

Application of Lyapunov’s method to investigation of stability of equations of 
motion for mechanical systems in the inexplicit form (6) is bound up with investigation 
of signdefiniteness of the derivative of the Lyapunov function, which is given 
inexplicitly, because it contains generalized accelerations. The theorems on stability 
proved above allow us to weaken the difficulties and suggest a more complete pattern 
of tracing trajectories in the vicinity of the set of nonisolated equilibrium positions for 
the systems with friction. 

Let us assume that for every point x∈Ω  the cone ( )xΓ , which is represented 
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in the main conditions 1–4 of Section 2.1, possesses the property: ( ) ( )=x x x+Γ Γ . 

This property holds when ( )xΓ  has some special structure, to be specific: ( )xΓ  

represents some nonempty set or coinciding with the whole space nR , or formed by 
intersection of semispaces and subspaces of the form 

 

{ } { } { }0: 0 , : 0 , : 0 ,n n n
s s s s s sL x R x L x R x L x R x− +′ ′ ′ ′ ′ ′∈ ≤ ∈ ≥ ∈ =@ @ @  

where the indices s  are taken from the set ( ) ( ){ }1, , : = 0sN x s n x∈ K@ . Right 

these sets arise in investigation of systems with friction (8).  
 

Let us put ( ) { }: <S x x x xδ δ′ ′∈Ω −@ , ( ) ( ) ( )x S x xδ δΩ ΓI@  

and exactly formulate the conditions under which we are going to investigate equation 
(18). 

 
Let set ( )xΓ  (with the property indicated above) be defined for every point 

x∈Ω , and let there exist a locally Lipschitz function :xV R+Ω→ , which both, as 

well as function f , satisfy the following conditions: 
 
1. Function f  is locally bounded; 

2. For any 0ε >  there exists ( )= , > 0xδ δ ε  such that for all ( )x xδ′∈Ω  

the following condition is satisfied ( ) ( ) <f x f x ε′− ; 

3. ( ) ( )f x x∈Γ  for all x∈Ω ; 

4. For every fixed point x∈Ω  the following relation holds 

( )( ) ( ) ( )( ), 0 = 0x xx V x V x x x′ ′ ′ ′∀ ∈Ω ≥ ∧ ⇔ ∈Γ       (20) 

and if ( ) nx RΓ ≠ then there exist such numbers ( )= > 0xα α  and 

( )= > 0xδ δ , that 

( )* <xD V x α+ ′ −           (21) 

for all ( ) ( )\x S x xδ′∈ Γ . 

It follows from (20) and (21) that for any x∈Ω  and under the appropriate 
choice of the number > 0δ  set ( )xδΩ  possesses the property of absolute sector, i.e. 

the trajectory of any solution with the initial condition ( ) ( )0x xδ∈Ω  stays in 

( )xδΩ  for all 0t ≥  for which ( ) ( )x t S xδ∈ . 

 
D e f i n i t i o n . Set ( )xδΩ  is called the Γ  – sector with the node x  and 

radiusδ  (furthermore, condition (23) holds for the number > 0δ ). In the case, when 

( ) = nx RΓ , any arbitrary positive number is considered as the radius. 

Consider a compact set M ⊂ Ω , which for each x M∈  satisfies the condition 
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( )M x⊂ Γ .            (22) 

Introduce the denotation ( ){ }: , <nM x R d x Aβ β′ ′∈@  for any arbitrary 

number 0β > . 
If V  is a real-valued function defined within some neighborhood of set M ,  

and γ  is a number, then ( ) ( ){ }< : <E V x V xγ γ@ . The set ( )=E V γ  is 
defined similarly. 
 
 

T h e o r e m  2 .3.1. Let a nonnegative locally Lipschitz function ( )V x  with 

the following properties be defined in some  neighborhood M ρ , > 0ρ , of set M : 

1) ( ) = 0V x x M⇔ ∈ ; 

2) for any Γ  – sectors ( )xδΩ  with the node x M∈  and radius δ ρ<  the 

condition ( )* 0D V x+ ′ ≤  is satisfied for all ( )x xδ′∈Ω . 

Hence for any 0ε >  and 0τ >  there exist 0δ >  and a finite coverage of set 
M  with Γ  – sectors ( )ii

xδΩ ,  ix M∈ ,  = 1, ,i mK , such that any solution 

( )x t  with the initial condition ( )0x M δ∈  is defined for all 0t ≥  and satisfies the 

condition ( )x t M ε∈  for all 0t ≥  and 

( ) ( ) ( ){ }, : 1, ,ii
t x t x i nδτ∀ ≥ ∈ Ω ∈U K         (23) 

 
Tracing trajectories for equation (20) within the limits of the Γ  – sector 

( )xδΩ  may be substantially simplified, what allows to investigate signdefiniteness of 

the derivative of function V more efficiently. 

2.4. Asymptotic stability and instability.  

Note, Theorem 2.3.1 states not only the fact of stability of set M  but also 
satisfaction of condition (23), from which it follows that function ( )( )V x t  is 

nonincreasing for all τ≥t  along any solution ( )x t  with the initial condition 

( )0x M δ∈ . The latter side by side with the principle of invariance may be used in 

the investigation of asymptotic stability of set M . 

 
T h e o r e m  2.4.1.  Let conditions of Theorem 2.3.1 be satisfied, and, 

additionally, ( )* < 0D V x+ ′  for all ( ) \x x Mδ′∈Ω . Hence M  is asymptotically 

stable (i.e. M  is stable and ( )( ), 0d x t M →  for t →+∞  for any solution ( )x t  

with the initial value ( )0x M δ∈ ). 
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T h e o r e m  2 . 4 . 2 . Let conditions of Theorem 2.4.1 be satisfied, and, 
additionally, set  ( )* = 0E D V M ρ+ I do not contain any closed semi-invariant sets, 

which do not intersect with M  and belong to some covering of set M  with Γ  – 
sectors. Hence set M  is asymptotically stable. 

If, otherwise, ( ) { }0 0Γ ≠  and condition 2 of Theorem 3.2.1. is replaced with  

the condition: 
2′) for any Γ  – sector ( )xδΩ  with the node x M∈  and radius δ ρ<  the 

inequality ( )* 0D V x+ ′ ≥  holds for all ( )x xδ′∈Ω , then, under the same additional 

assumption, set M  is unstable. 
 

3 EQUATIONS OF DYNAMICS FOR MECHANICAL SYSTEMS WITH 
SLIDING FRICTION 

3.1. Solvability of equations of motion with respect to generalized accelerations.  
 
The conditions of solvability of equations of motion with respect to velocities are 
determined by the methods of investigation. In the present work, the principle of 
contracting mappings has been laid as the basis of the approach to solvability of 
equations of motion with respect to accelerations. The respective method presumes 
existence of definite properties, which are not represented in equations (6): from the 
definition of frictions forces ( ), , ,TQ t q q q& &&  by formula (10) one cannot derive even 

the fact of their continuity with respect to variable q&& . 
 

For the purpose of overcoming the difficulties that arise in this case, we 
introduce in consideration a new system of equations, which is close in its structure to 
the initial equations of motion and which is henceforth called equations of dynamics. 
These equations, generally speaking, differ from the initial equations (8), but, 
nevertheless, under definite conditions these define the same equations in explicit form 
and, so, have the same solutions. Introduce the denotation: 

 

( ) { }*(1, , ) : = 0sq s k q∈& &K@N

( ) ( ) ( ) ( ) ( ){ }0
0 , , , : , , , , ,0 , , ,T s

s s st q q q s N q Q t q q q f t q N t q q q∈ ≤& && & & && & &&@N
 

and write down the following system of equations: 
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=
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s s
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i
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a t q q g t q q Q t q q s k k
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⎪
⎪
⎪
⎪
⎪
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⎪⎪
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⎪
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   (24) 

 
 
L e m m a  3 .1.1. If for all ( ) ( )0 , , ,\s q t q q q∈ & & &&N N , ( ), , , kt q q q R∈Ω×& && , 

such that ( ), , , 0sN t q q q ≠& &&  the inequality 

( ) ( ) ( )
, , ,

, , 0 < ,s
s sss

N t q q q
f t q a t q

q
∂

∂

& &&

&&
,                       (25) 

holds, then the equation of motion (6) with friction forces (10) is equivalent to the 
system of equations (24) (i.e. their solutions coincide in some or another sense). 
 

Unlike that in equation (6), right-hand sides of equations (24) are continuous 
with respect to q&&  for any fixed ( ), ,t q q ∈Ω& . 

 
Let ( ) ( )*,A t q k⎡ ⎤⎣ ⎦  be a submatrix of matrix ( ),A t q , which has been 

obtained from it by deleting the first *k  rows and columns. Like ( ),A t q  

( ) ( )*,A t q k⎡ ⎤⎣ ⎦  is a positive definite and, consequently, nonsingular matrix. By 

*
,* * 1

k k

k i k ja
−

+ +
⎡ ⎤
⎣ ⎦%  we denote the matrix inverse with respect to ( ) ( )*,A t q k⎡ ⎤⎣ ⎦ . 

Consider the inequalities 

= 1 = 1 ** *

<
k k

s s ss
s s s s sj s s ij ij

j k i k

N N aa f e a f e a a
x x kν ν ννγ

+ +

∂ ⎛ ∂ ⎞
− + −⎜ ⎟∂ ∂⎝ ⎠

∑ ∑ %
&& &&

           (26) 

for all *, = 1, ,s kν K  at each point ( )* *, , , kt q q q R∈Ω×& &&  such that 0sN ≠ , 

where se  may assume the values 1+  or –1 and 
0, = ;

=
1, .s

s
sν

ν
γ

ν
⎧
⎨ ≠⎩

 

 
Since the inequality ( ), > 0ssa t q  holds in the domain under scrutiny, 

inequalities (26) are always satisfied for sufficiently small functions sf  and for off-
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diagonal elements sa ν  of matrix A . Hence, the following statement is valid. 
 
T h e o r e m  3 .1.1. Let inequalities (26) hold. Hence equations of dynamics 

(24) aare unequivocally solvable with respect to q&&  and may be reduced to the form 

( )= , ,q G t q q&& & .            (27) 

 
From now on inequalities (26) are assumed to be satisfied (below we use a 

strengthened variant of these inequalities), and function G , which is the slution of 
equations (24) with respect to q&& , is assumed to be defined on setΩ . 

 

3.2. The properties of function G.  

Introduce the following denotations for every point ( ), , , kt q q q R∈Ω×& && :  

 

( ) ( ){
( ) }

0

0 0

= , , , : = 0, если , > ;

0, если , , 0 .

k s T
s s s

s T T
s s s s

t q q q q R q s q f N Q

q Q s q f N Q N

′ ′Γ Γ ∈ ∈

′ ≤ ∈ ≤ ≠

& && & & &

& &

@ N

N
If 

( ) = 0q /&N  or = 0sN  for all ( )s q∈ &N , then we assume kRΓ@ . 

 
Suppose that  
 

( ) ( ){ }= , , , , : < , < , <S S t q q t q q t t t q q q qδ δ δ δ δ′ ′ ′ ′ ′ ′∈Ω ≤ + − −& & & &@ , 

( ) ( ) ( ){ }0 0= , , , , : , , ,t q q t q q q t q q G′ ′ ′ ′Ω Ω ∈Ω ∈Γ& & & &@ , 

( ) ( ) ( )0 0, , , , , ,t q q t q q S t q qδ δΩ Ω& & &I@ . 

 
Let us speak that the strengthened inequalities (26) hold  when their right-hand 

sides are replaced with the expression *k nγ , where ( )= , ,t q qγ γ &  is a continuous 

function, which satisfies the condition ( )0 < , , < 1t q qγ &  for all ( ), ,t q q ∈Ω& . Let 

us put 1n =  when the set ( ) = 0q /&N  or it contains not more than 2 indices, and 

= 1n k −  when ( )q&N  contains 2k >  indices. 
 
T h e o r e m  3 .2.1. Let the strengthened inequalities (28) be satisfied. Hence 

for every point ( ), ,t q q ∈Ω&  defined are set ( ), , ,t q q GΓ & , which represents an 

intersection of subspaces and semispaces of generalized velocities q& , the Lipschitz 

function ( ) ( ), ,t q qV q′&
&  and (at each point ( ), ,t q q ∈Ω& ) the following properties of 

function G hold: 
1. G  is locally bounded; 
2. G  is continuous at the point ( ), ,t q q ∈Ω&  along the set ( ), , ,t q q GΓ & ; 
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3. ( ) ( ), , , , ,G t q q t q q G∈Γ& & ; 

4. Function ( )( , , )t q qV q′& &  is nonnegative and satisfies the condition 

( ) ( ) ( ), , = 0 , , ,t q qV q q t q q G′ ′⇔ ∈Γ&
& & &  

and if ( ), , , kt q q G RΓ ≠& , then there exist numbers ( )= , , > 0t q qα α & , 

( )= , , > 0t q qδ δ & , such that ( ) ( ), , <t q qD V q α+ ′ −&
&  for all 

( ) ( ) ( )0, , , , , ,\t q q S t q q t q qδ′ ′ ′ ∈ Ω& & & . 

 
 

4 RIGHT-HABD SIDE SOLUTIONS OF EQUATIONS OF THE SYSTEM 
DYNAMICS WITH FRICTION 

4.1. Existence and general properties of solutions.  
Let us introduce the denotations: ( )= ,x q q& , ( )1 2= ,f G G , where ( )1 , =G t x q& ,  

( ) ( )2 , = , ,G t x G t q q& . Hence equation (29) writes in the form of equation (13) 

investigated in Part 2 of the present paper, and from Theorem 3.2.1 it follows that the 
principal conditions of Section 2.1 are satisfied. Indeed, cone ( ), , ,t q q GΓ &  (under 

the condition that ( )= , ,q G t q q&& & ) is defined as an intersection of subspaces and 

semispaces of generalized velocities sq&  (at points of discontinuity 0sq =&  of function 

G ). When considering the Cartesian product ( ), , ,kR t q q G×Γ & , we obtain a closed 

cone ( ),t xΓ  (the denotation remains the same) in space 2kR , for which the 

following obvious equality ( ) ( ), = ,x t x t x+Γ Γ  holds at each point ( ),t x ∈Ω , 

where 2 1kR +Ω ⊂  is the domain of definition for the right-hand sides of dynamics 
equations (26).  
 

Consider formulations of the principal theorems. 
 
T h e o r e m  4 .1.1. For any initial state ( )0 0 0, ,t q q ∈Ω&  there exists a 

local right solution of problem (29). Any right solution is -R right on its interval of 
definition, i.e. the right derivative ( )D q t+ & is a function continuous on the right. 

 
T h e o r e m  4 .1.2. The limit предел ( ) ( )( ),q t q t&  of the sequence of right 

solutions of dynamics equations (29), which is homogeneous on the segment 
[ )0 0,t t a+  and satisfies the condition ( ) ( )( ), ,t q t q t ∈Ω&  for [ )0 0,t t t a∈ + , 

represents the right solution of the dynamics equations. 
 
Let us speak that the right solution ( ) ( )( ),q t q t& , which is defined on the right 

maximal segment of existence [ )0 ,t ω , tends to the boundary of set Ω  if for any 
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compact set K ⊂ Ω  there exists a point ( )0 ,Kt t ω∈  such that 

( ) ( )( ), ,t q t q t K∈/&  for all ( ),Kt t ω∈  (the solution leaves compact subsets from 

Ω ). 
 
T h e o r e m  4 .1.3. Any right solution of dynamics equations (29) with the 

initial conditions ( )0 0 0, ,t q q ∈Ω&  may be continued onto the right maximal segment 

of existence [ )0 ,t ω . Any right noncontinuable right-hand-side solution tends to the 

boundary of set Ω . Furthermore: 
 
1) if ( )= ,a b HΩ ×  and bω < , then ( ) ( )( ),q t q t&  tends to the boundary 

of set H ; 
2) if 1= R HΩ × , then either ω = +∞ orω < +∞  and ( ) ( )( ),q t q t&  tends 

to the boundary of H ; 
3) if 1 2= kR RΩ × , then either ω = +∞ or ω < +∞  and 
 
 ( ) ( )q t q t+ → +∞&  for 0t ω→ − . 

 

4.2. Continuous dependence of solutions on initial states and parameters.  

Let functions sf , sN , A
sg , A

sQ , sia  be dependent also on parameter λ , 

which assumes its values in some metric space Λ  and are continuous with respect to a 
set of arguments (denotations for them will be still the same). Matrix ( ), ,A t q λ  is 
assumes to be positive definite and symmetric in the domain of definition of its 
variables.  

 
Consider the initial-value problems 
 

( ) ( ) ( )0 0 0 0 0= , , , , = , = , =q G t q q q t q q t qλ λ λ&& & & & ,                    (28) 

 
where function ( ), , ,G t q q λ&  is defined from the equations of dynamics. 

 
T h e o r e m  4 .2.1. Let equation (28) possess the property of right 

uniqueness, ( ) ( )( ),q t q t& is the right solution of problem (28) with the data 

( )0 0 0 0, , ,t q q λ& and with the right maximal segment of existence [ )0 ,t ω . Hence for 

any 0ε >  and ( )*
0 ,t t ω∈  there exists 0δ >  such that any right solution 

( ) ( )( ),q t q t′ ′&  of problem (28) with the initial states ( )0 0 0, ,t q q′ ′ ′&  and with the 

values of λ′ , which satisfy the conditions 

( )0 0 0 0 0 0 0< , < , < , , <q q q q t t t dδ δ δ λ λ δ′ ′ ′ ′− − − ≤& , 

may be continued onto the right maximal interval of existence [ )0 ,t ω′ ′ , *> tω′  and 
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for the continuation  ( ) ( )( ),q t q t′ ′&  the condition  

( ) ( ) ( ) ( )< , <'q t q t q t q tε ε′ − −& &  

holds for all *
0 ,t t t⎡ ⎤∈ ⎣ ⎦ . 

 
C o r o l l a r y  4 .2.1. Let equation (28) possess the property of right 

uniqueness, 0nλ λ→ , ( ) ( )0 0 0 0 0 0, , , ,n n nt q q t q q→& &  0 0nt t≤ , and 

( ) ( )( ),q t q t′ ′& is the right solution of problem (28) with the data ( )0 0 0 0, , ,t q q λ& , 

which is defined on the right maximal interval of existence [ )0 ,t ω . Hence for any 

( )*
0 ,t t ω∈  on the segment *

0 ,t t⎡ ⎤⎣ ⎦ , the sequence of right solutions 

( ) ( )( ),n nq t q t&  of equation (28) с данными ( )0 0 0, , ,n n nt q q λ&  is defined and 

uniformly converhes to ( ) ( )( ),q t q t& , while beginning from some n .   
 
Without any assumption of right uniqueness for equations of dynamics it is 

possible to formulate some theorems on the upper semi-continuous dependence of 
solutions on the initial system‘s states and parameters. 

 
R e m a r k . One of the principal directions in the theory of differential 

inclusions with discontinuous right-hand sides (including also the equations of 
dynamics of scrutinized systems with friction) is bound up with their representation in 
the form of differential inclusions. In case if the transition to the differential inclusion 
would not lower the exactness of the initial problem’s statement, then it would be 
possible to automatically disseminate onto systems with friction any known facts from 
the theory of differential inclusions, which is well developed presently. For example, it 
would be possible to extend Kneser’s theorem (which is related to connectedness of a 
set of solutions and is known for differential inclusions) onto equations of dynamics of 
systems with friction. This may be done in the case when normal reactions are 
independent of generalized accelerations. Sets of solutions of Karateodore equations for 
dynamics of systems with friction and of the differential inclusions formed by the 
simplest convex extension of the definition in the sense of A.F. Filippov [33] for the 
right-hand sides of equations of dynamics at points of discontinuity coincide. Any 
solutionof the differential inclusion is right-hand side. 

 

4.3. Example of P. Painlevé.  

Let us turn back to the example of P. Painlevé and write down conditions of 
solvability (28) for it from section 2.1. Equations of motion write: 

 
2

1

2

2 sin = cos

sin = cos

Tx r r Q

r x r rg

θ θ θ θ

θ θ θ

⎧ − +⎪
⎨
− +⎪⎩

&& &&&

&&&&
         (29) 

 
The absolute value of the normal reaction and the friction at rest: 
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( ) ( )2
1 , , = cos sin 2N r gθ θ θ θ θ θ θ− −& && && & , 

( )0 2
1 , , = sin cosTQ r rθ θ θ θ θ θ θ− −& && && & . 

 
In the general case, the fricxtion forces write: 
 
 

    ( )
( ) ( )

( ) ( )
( ) ( )

( )

0
1

0
1 1

0
1 11

0
1 1

1

( , , ), if = 0 and 

, , , , ;

, , , , , if = 0 and, , , =

, , , , ;

, , , if 0.

T

T

TT

T

Q x

Q f N

f N sgn Q xQ x

Q f N

f N sgn x x

θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θθ θ θ

θ θ θ θ θ θ

θ θ θ

⎧
⎪
⎪ ≤
⎪
⎪
⎨
⎪

>⎪
⎪
− ≠⎪⎩

& && &

& && & &&

& && & &&& && &&

& && & &&

& && & &

    (30) 

 

where > 0f  is the friction coefficient (constant). Since ( )1 , ,N θ θ θ& &&  is 

independent of x&&  , the dynamics equations (of the form (24)) in the given case coincide 
with equations of motion (29), while presuming  extension of the definition of friction 
forces with use of formula (30). 
 

Consider inequalities (26) in connection with equations (29). Here = 2k , 

* = 1k , = 1ν , 2
22 = 1/a r% . The sets 

 
{1}, if = 0

=
0, if 0

x

x

⎧⎪
⎨
/ ≠⎪⎩

&

&
N  

 

( ) ( )

0
1 1

0
0

1 1

{1}, if = 0,
=

0, if 0 = 0, >

T

T

x Q f N

x x Q f N

⎧ ≤
⎪
⎨
⎪/ ≠ ∨⎩

&

& &
N  

 
Since 1 1= cosN r sgnNθ θ∂ && , if 1 0N ≠  then formula (26) has the form of 

inequality 2 cos sin < 2sin fθ θ θ+  or, equivalently, 

 
2sin cos < 1 cosf θ θ θ+ .        (31) 

 
When inequality (31) holds, equations (29) are unequivocally solvable with 

respect to accelerations, and so saved from any contradictions with Coulomb’s laws of 
friction, which was emphasized by P. Painlevé. Noteworthy, as far as the angle 

( )0 0, 2θ π∈  and the friction coefficient f , which satisfy the inequality 
2

0 0sin cos > 1 cosf θ θ θ+ ,        (32) 
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for definite initial states, either nomotion undergoes the laws of friction accepted or  
already two motions undergo these laws. Inequalities (31) and (32) are consistent with 
the results of analysis of the P. Painlevé’s example (see [17]). It may readily be verified 
that inequality (31) holds for any [ ]0, 2θ π∈ , when the friction coefficient f  does 
not exceed the value, which approximately is 2.8. 
 
 
5 ATTRACTION AND STABILITY OF THE SET EQUILIBRIUM 
POSITIONS FOR THE SYSTEMS WITH FRICTION 

 
5.1. Attraction for autonomous systems.  
 

The section is devoted to investigation of issues of attraction of the set of equilibrium 
positions of system (6) under the effect of potential, dissipative, gyroscopic forces and 
forces of sliding friction in the autonomous case. A general scheme of investigations 
releted to attraction for the mechanical system under scrutiny is proposed. Its efficiency 
is demonstrated by an example. 
 

Now consider equations of motion of a mechanical system (6) under the 
condition that the kinetic energy and the forces acting on the system are independent of  
 
 
time. As before, in this case we assume that the system’s kinetic energy may be 
represented as the sum 1 0=aT T T T+ +  of the positive definite quadratic form T  of 

generalized velocities with a symmetric positive definite matrix ( ) ( )
1

=
k

ijA q a q⎡ ⎤⎣ ⎦ , a 

linear form of generalized velocities ( )1
=1

=
k

i
i

i

T a q q∑ &  and a function ( )0T q . 

Suppose further that  
 

( ) ( ) ( ), = ,A
s s sQ q q D q q K q+& & , 

 
and introduce the denotation 
 

( ) 01 1

=1
, = , ( ) =

k
j j es

s ss s s j s
j

a a TT Tdq q q Q q
q dt q q q q

∆∂⎛ ⎞∂ ∂∂ ∂
Γ − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∑& &
&

@ , 

 
where ( ) = s

sK q q−∂Π ∂ , ( )qΠ  is the system’s potential energy, ( ),sD q q&  are 

the dissipative forces, ( ),s q qΓ &  are gyroscopic forces with conditions 

( ), 0 0sD q ≡ , ( ), 0 0s qΓ ≡ ; ( )e
sQ q  are generalized transferable inertia forces 

( = 1, , )s kK . Hence the initial system writes 
 

= , = 1, ,e T
i i i i ii i

d T T D K Q Q i k
dt q q

∂ ∂
− +Γ + + +

∂ ∂
K

&
.        (33) 

 



 
 
 
 
 
 

Vladimir M. Matrosov and Ivan A. Finogenko 
 
 

Put 0 0V T TΠ + −@ . Having multiplies equations (33) by iq&  and then adding 
them, we obtain 

 

( ) ( ) ( )
*

0
=1 =1

, = | || | , 0
k k

i i
i i i

i i
D V q q f N q D q q q+ − + ≤∑ ∑& & & &        (34) 

 
Let ( )*1, ,J k⊂ K . Introduce the denotations 
 

( ), = | || |i
J i i

i J

w q q f N q
∈
∑& &  

( ){ }= , : = 0,i
JH q q q i J∈& & , 

( ){ }0= , : = 0, | | | |,i T
J i i iM q q q f N Q i J≥ ∈& & , 

{
}

*

*

= ( ,0) : , = 1, , ;

= 0, = 1, ,

e
i i i i

e
i i

M q f N K Q i k

K Q i k k

≥ +

+ +

K

K

      (35) 

Obviously, if J J′ ⊂  then 0J Jw w D V+′ ≤ ≤ − , ,J J J JH H M M′ ′⊂ ⊂ , 

and it is always valid that ( )= 0J J JM M H E w⊂ ⊂ ⊂ . 

 
Set M  defined by equality (35), represents a set of equilibrium positions for the 

equations (33). Sets jH  and M  are closed. 

 
Likewise before we assume that 

( ) ( ){ }*= 1, , : = 0iN q i k q∈& &K . 

It can easily be verified that  

( ) ( ), Jq q H J N q∈ ⇔ ⊂& &  

and 
  ( ) ( )( ) ( )( ) ( )( ), = 0 \ \ 0 \ , = 0J J iq q E w H J N q i J N q N∈ ⇔ ≠ / ∧ ∀ ∈& & &  (36) 

 
Directly from above assumptions and from Theorem 2.2.1 it follows that for any 

solution ( ) ( ) ( )( )= ,z t q t q t&  of equation (33) and for the set ( )*1, ,J k⊂ K  the 

following inclusion  

( ) ( )= 0Jz E w+Λ ⊂           (37) 

holds. 
 

T h e o r e m  5 . 1 . 1 . Let for some set ( )*1, ,J k⊂ K  there exists a finite 

set of locally Lipschitz functions ( ) ( ), = 1, 2, ,iV q q i N& K  such that 
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( )( ) ( )( )

( )( )*

0 , = 0

1, , = 0, 0

\ \ j

i i

J N q j J N q N

i N V D V+
≠ / ∧ ∀ ∈ ⇒

⇒ ∃ ∈ ≠

& &
      (38) 

Hence ( ) Jz H+Λ ⊂  for any solution ( )z t  of equation (33). 

 
Т е о р е м а  5 .1.2. Let for the set ( )*1, ,J k⊂ K  condition (38) holds. 

Hence for any solution ( )z t  of equation (33) the following condition 

( ) Jz M+Λ ⊂            (39) 

holds, and, furthermore: 
1) either ( )z t →∞  or 0JM ≠ /  and ( )z t  weakly tends to jM ; 

2) either solution ( )z t  is unbounded or 0JM ≠ /  and ( )z t  tends to jM . 

 
T h e o r e m  5 .1.3. Let condition (40) holds for the set ( )*1, ,J k⊂ K , and 

the dissipation is complete with respect to 
1* , ,k kq q+

& &K , i.e. 

( ) 2

=1 = 1*

,
k k

i i
i

i i k
D q q q qγ

+

≤ −∑ ∑& & &      (40) 

 
for some 0γ > . Hence for any solution ( )z t  of equation (33) the following inclusion 

( )z M+Λ ⊂        (41) 

holds. 
Furtermore: 
1) either ( )z t →∞ or 0M ≠ /  and ( )z t  weakly tends to M ; 

2) either решение ( )z t  is unbounded or 0M ≠ /  and ( )z t  tends to M ; 

3) ( )= 0M z t/ ⇔ →∞  for any solution ( )z t  of equation (33). 

 
Note, within the frames of assumptions of Theorem 5.1.3 system (33) is 

dichotomous. In order to reveal this fact under condition (40) or under the condition 
that *k k=  it is sufficient to verify relation (38), while putting ( )*1, ,J k⊂ K . The 

latter means the following: for any index ( )*1, ,J k⊂ K  such that 

 0, = 0j
jq N≠&         (42) 

there must exist some function iV  (from the finite set of locally Lipschitz functions) at 

some point ( ),q q&  such that 

 

( ) ( )*, = 0, , 0i iV q q D V q q+ ≠& &      (43) 

 
Functions, which satisfy conditions (43), may be defined in the process of 
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analysis of conditions (42). Let us demonstrate this with the use of an example. 
 

5.2. Example. A pendulum system with friction in the bearing and the hinge.  

         Consider a flat mechanical system, which consists of a piston B  of mass 1m  

moving with sliding friction along a straight tube Ox , which is inclined at an angle 

( )= 0 < 2constα α π≤  with respect to the horizontal plane, with the coordinate 
1x q= ; and a heavy perfectly rigid body of mass 2m  revolving with friction around a 

cylindric hinge, installed on the piston and placed at a distance r  from the hinge to the 
mass center C . CJ  is the inertia moment with respect to the mass center (Fig. 1). 

Angle β  of deviation of BC  from the normal to Ox , which is directed downwards, 

is  assumed to be 2q . The friction coefficients – 1f  in the piston and 2f  in the hinge – 

are assumed to be constant, 1 2m m m= + , 2
2= CJ J m r+ . 

 
y 

x

MT

N1

F T

N2

α 

0 

B

C

β 

m1g 

m2g 

α + β  

Figure 1. The pendulum system with friction in the bearing and in the hinge 

 
 
Equations of the system in Lagrange form may be written in the following form: 
 

  
2

2 2 1

2 2 2

cos = sin sin

cos = sin( ) .

T

T

mx m r m r mg Q

m r x J m gr Q

β β β β α

β β α β

⎧ + − +⎪
⎨

+ − + +⎪⎩

&& &&&

&&&&
       (44) 

 
The modules of the normal reactions and the generalized friction forces for the case of 
relative equilibrium with respect to x  and β  write as follows: 
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( )

( ) ( )

( ) ( )
( )( ) ( )

2
1 2

1/22 22 2
2 2

0 2
1 2

0
2 2

= sin cos ,

= cos sin cos ,

= cos sin sin = 0, = 0 ,

= cos sin = 0, = 0 .

T

T

N m r mg

N m x r r sin r r g

Q m r mg x x

Q m r x g

β β β β

β β β β β β β β

β β β β α

β α β β β

+ +

⎡ ⎤+ − + + +⎢ ⎥⎣ ⎦

− +

+ +

&& &

&& & && &&&

&& & & &&

& &&&&

 

 
The generalized friction forces are defined for 1, 2s =  by the formula 
 

0 0
=0

0 0
=0

, if = 0,

= , if = 0, >

, if 0.

T s T
ss s s s q

T T s T
ss s s s s s s q

s s
s s

Q q Q f N

Q f N sgn Q q Q f N

f N sgn q q

⎧ ≤
⎪⎪
⎨
⎪
− ≠⎪⎩

&&

&&

&

&

& &

 

 
The sufficient condition for satisfaction of inequalities (26) and (25) has the form: 
 

( )
( )

( )

2 1

2 2

2 2

cos sin < 2,

cos < 2,

cos sin < 2.

m r f m

m r f J

m r f J

β β

β

β β

+

+

+

 

 
The set of equilibrium positions for the system writes:  
 

( ) ( ){ }1 2= , : = 0, = 0, tg , sinM q q x f f rβ α α β≥ ≥ +&& &  

 
where 1f , 2f  are friction coefficients (constant values) in the piston and the hinge, 
respectively. 
 

In the capacity of the principal Lyapunov function, as it follows from the general 
Theorem 1.3, we take the system’s energy: 

 

( )
( )( )

2 2
0 2

2

= = 1 2 2 cos

sin 1 cos .

V T mx m rx J

mgx m gr

β β β

α α β

+Π + + +

+ + − +

& && &
 

 
Consider the following auxiliary Lyapunov functions for the set of indices 
{ }0 = 1, 2J  

 

( ) ( )2
1 2 3 4= , = , = cos , = sinV x V V r g Vβ β α β α β+ + +& &&  
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and the function 

1 1 2 2 0= | || | | || |=w f N x f N D Vβ ++ −&&  

 
and let us show that condition (40) is satisfied for them. 
 

There are the following 3 possibilities of satisfaction of the condition 
 

( )( ) ( )( )0 00 , = 0\ \ jJ q j J q N≠ / ∧ ∀ ∈& &N N , 

 
these are: 
 

1) ( ) { } ( )1= 2 , = 0 = 0, 0q N xβ ≠&& &N ; 

2) ( ) { } ( )2= 1 , = 0 0, = 0q N xβ ≠&& &N ; 

3) ( ) ( )1 2= 0, = 0, = 0 0, 0q N N xβ/ ≠ ≠&& &N . 

 
It may readily be seen that functions 1N  and 2N  do not turn zero 

simultaneously under any conditions, and so, case 3 is hardly ever possible. 
 
Consider cases 1 and 2. 
1)  If = 0D β+ &  then from conditions 1 0N = , = 0β&  we obtain 

cos 0mg α = , what is impossible (because 0 < 2α π≤ ). Consequently, 2 0V = , 

2 0D V+ ≠ . (This is how function 2V  is determined). 

2)  If 0D x+ ≠&  then ( )1 0 = 0V x= &  и 1 0D V+ ≠ .  (This is how function 1V  
is determined). 

Let = 0D x+ & . Hence from the condition 2 0N =  we obtain: 

 

 
2

2

cos sin sin = 0

sin cos cos = 0

r r g

r r g

β β β β α

β β β β α

− +

+ +

&& &

&& &
          (45) 

 
Having multiplied the first one of equalities (45) by sin β , and the second one 

– by cos β , and then subtracting the first one from the second one, we obtain 

( )2 cos = 0r gβ α β+ +& . Consequently, 3 0V = . 

 
From the second equation of (5.17) under the condition that = = 0D x x+ & && , 

2 0N =  we obtain ( )2= sinm gr Jβ α β− +&& , whence we have 

( )( )2
3 2= sin 2 1D V g r m Jβ α β+ − + +& . 

 
Since in case 2 under scrutiny it true that 0β ≠& , we have 3 0D V+ ≠  when 
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( )sin 0α β+ ≠  (This is how function 3V  is determined). 

 
If, otherwise, ( )sin = 0α β+  then 4 0V =  and 

( )4 = cos 0D V α β β+ + ≠&  (This is how function 4V  is determined). 

 
This completes investigation of conditions of Theorem 2.3.1 for the 

equation (5.17), what  allows one to conclude on the dichotomous character of the 
system (this follows from Theorem 5.1.3). 

 
The following two remarks may be expedient: 
1) If 1tg fα >  then 0M = / , and there are no bounded solutions in system 

(5.17) (to be exact, all the solutions are infinitely large); 
2) If 1tg fα =  then 0M ≠ / , but equations (5.17) have a solution (an 

unbounded one) 0 0=x x t x+& , 0=x x& & , 0=β β  = 0β& , where 

( )2 0sinf r α β≥ + , 0 < 0x& , which does not tend to M  even weakly.  

5.3. Stability of the set equilibrium positions for the systems with friction.  

Consider the system of equations 
 

( ) ( ) ( ) ( )= , , , ,A TA q q g q q Q q q Q q q q+ +&& & & & &&          (46) 

 
The set of all equilibrium positions of system (46) is defimned by the equality 
 

       

( ){
( ) ( ) ( )

( ) ( ) }
*

*

= ,0 :

, 0 , 0 , 0 ( ,0,0) , = 1, , ;

, 0 , 0 = 0, = 1, , .

A s
s s s s

A
s s

M q

g q Q q f q N q s k

g q Q q s k k

∈Ω

+ ≤

+ +

K

K

     (47) 

 
For every point ( )= ,z q q M∈&  the cone ( )zΓ , which defined -Γ sectors, is given 

in its explicit form and represents a set of vectors ( ),q q′ ′&  such that for each 

( )*1, ,s k∈ K  the following conditions   

 
1) = 0sq′& , when ( ) ( ) ( ) ( ), 0 , 0, 0 > , 0 , 0A

s s sf q N q g q Q q+ ; 

2) 0 0s T
sq Q′ ≤& , when ( ) ( ) ( ),0 , 0, 0 , 0 ( ,0)s A

s s s sf q N q g q Q q≤ + , 

( ), 0, 0 0sN q ≠  

hold. 
 

Obviously, for each z M∈  the inclusion ( )M z⊂ Γ  is valid. 

For those indicies ( )*1, ,s k∈ K , for which the condition 
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( ), 0, 0 0sN q ≠  is satisfied on set M , within the -Γ sector the respective 

coordinates of generalized velocities sq&  either turn zero or acquire a definite sign. So, 
defined is either some relative equilibrium or the direction of motion of system (46) 
with respect to the generalized coordinate sq&  in the vicinity of the set of equilibrium 
positions (for both stable equilibrium and unstable equilibrium). The latter may relieve 
the difficulties bound up with investigation of signdefiniteness of the derivative *D V+  
due to system (46) because this derivative is given inexplictly. This may also turn out to 
be useful in investigations of not only ordinary stability, but also asymptotic stability 
and instability with the use the principle of invariance. 

 
Note also that for any equilibrium position ( )= , 0x q M∈ , for which 

=0
<A

s s s s q
g Q f N+

&&
 for all *= 1, ,s kK  under the condition that *k k=  

within the -Γ sector, only steady motions are possible. Whence we can conclude on 
stability (pointwise stability) of each such equilibrium (these issues are discussed in 
detail below). 

 
Theorem on stability from Section 1.3 may be reformulated to be applied to 

system (46) and to -Γ sectors, generated by sets ( )zΓ  described above, with the nodes  

( )= , 0z q M∈ . The sets of equilibrium positions of scrutinized mechanical systems 

are characterized by the specificity, in view of which we have to propose the following 
two additional theorems on asymptotic stability and on instability. 

 
Some compact set M  of equlibria for system (46) will be called isolated if there 

exists a number 0ρ >  such that its neighborhood M ρ  does not conyain any 
equilibrium positions, which do not belong to M . 

 
T h e o r e m  5 . 3 . 1 .  Let M  be some stable compact and isolated set of 

equilibrium positions related to equation  (46). Suppose that there are locally Lipschitz 
functions ( )iV x , = 1, ,i mK , defined on set M ρ , 0ρ > , and such that for any 

-Γ sector ( )zδΩ  with the node z M∈  and with the radius ( )0,δ ρ∈  the 

conditions 
1) ( )* 0iD V z+ ′ ≤  for all ( )z zδ′∈Ω , = 1, ,i mK ; 

2) { }: = ( , ), = 0E z z q q q⊂ & & , 

where ( ){ }* = 0 : = 1, ,iE E D V i m+I K@ , hold. 

Hence M  is asymptotically stable. 
 
T h e o r e m  5 . 3 . 2 .  Let M  be some compact and isolated set of 

equilibrium positions related to equation (46). Suppose that there are locally Lipschitz 
functions ( )iV x ,  = 1, ,i mK , defined on set M ρ , 0ρ > , and such that for any 

-Γ sector ( )zδΩ  with the node z M∈  and with the radius ( )0,δ ρ∈  the 

conditions  



 
 
 
 
 
 

Vladimir M. Matrosov and Ivan A. Finogenko 
 
 

1) ( )*
1 0D V z+ ′ ≥  и ( )* 0iD V z+ ′ ≤  for all ( )z zδ′∈Ω , = 1, ,i mK ; 

2) ( ){ }: = , , = 0E z z q q q⊂ & & ; 

3) ( )1 0M E V⊂ ≤  and for any 0η >  there exists a point 

( )= , 0 \z q M Mη∈  such that ( ) 0V z > ; 
hold. 

Hence set M  is unstable. 
 
 

5.4. Example. A pendulum system with friction if the hinge and in the sliding-
contact bearing under the effect of elastic force.  
 
 

Consider a flat mechanical system, which consists of a piston B  of mass 1m  moving 

with friction along a horizontal straight tube Ox  and is considered as a material point 
with the coordinate 1x q= , and a heavy perfectly rigid body of mass 2m  revolving 
with friction around a cylindric hinge, installed on the piston and placed at a distance r  
from the hinge to the mass center C . CJ  is the inertia moment with respect to the 

mass center (Fig. 2). Angle β  of deviation of BC  from the normal to Ox , which is 

directed downwards, is  assumed to be 2q . It is presumed that along Ox there acts an 
elastic force of the spring having the elasticity coefficient c , and point of the strained 
state is 0x = . The friction coefficients – 1f  in the piston and 2f  in the hinge – are     

assumed to be constant, 1 2=m m m+ , 2
2= CJ J m r+ . 

 
The equations of system’s motion given in Lagrange form write: 
 
 

2
2 2 1

2 2 2

cos = sin

cos = sin

T

T

mx m r m r cx Q

m r x J m gr Q

β β β β

β β β

⎧ + − +⎪
⎨

+ − +⎪⎩

&& &&&

&&&&
      (48) 

 
 

The generalized friction forces are determined by formula (24) for 
1, 2s = 1,2=s , where 
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x

y

N1
N2

FT
0 B

β

C
m1g

m2g

 
 
Figure 2. The pendulum system with friction in the bearing and in the hinging, which is 
under the effect of elastic force 
 
 

( )

( ) ( )

( ) ( )
( ) ( )

2
1 2

1/22 22 2
2 2

0 2
1 2

0
2 2

= sin cos ,

= cos sin cos ,

= cos sin = 0, = 0 ,

= cos sin = 0, = 0 .

T

T

N m r mg

N m x r r sin r r g

Q m r cx x x

Q m r x g

β β β β

β β β β β β β β

β β β β

β β β β

+ +

⎡ ⎤+ − + + +⎢ ⎥⎣ ⎦

− +

+

&& &

&& & && &&&

&& & & &&

& &&&&

         

 
Inequalities (5.20) represent the sufficient conditions of solvability of equations 

(48) with respect to ( )= ,q x β&&&& && . These also are the sufficient conditions of 

equations (5.17). 
 
The set of equilibrium positions for the system (48) has the form: 
 

( ){ }1 2= , : = 0, = 0, , sinM q q x f mg c x f rβ β≥ ≥&& & . 

 
Let us assume that 2 1f r < . In this case, M  may be considered as a set 

rectangles on the plane ( ),x β . Now let us determine lzβ  from the conditions 

2sin =lz f rβ , 0 < < 2lzβ π  and put 1=lzx f mg c . The set 

( ){ }, : ,lz lz lzM q q M x x β β∈ ≤ ≤&@  will be called the lower zone of 

stagnation. 
Introduce the denotation: 
 

( )2 2

1

2, > ;
=

0, ;

lz lz

lz

c x x x x
W

x x

⎧ −⎪
⎨
⎪ ≤⎩
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( )2

2

cos cos , > ;
=

0, ;

lz lz

lz

m gr
W

β β β β

β β

⎧ −⎪
⎨

≤⎪⎩
 

 

( )2 2
2

1= 2 cos
2

T mx m rx Jβ β β+ +& && & , 

 

1 2=V T W W+ + , 

 

1 1 1 2 2 2= | || |, = | || |w f N x w f N β&& . 

 
Function V  is positive definite with respect to set lzM  in its sufficiently small 

neighborhood. 
 
Let us describe sets Γ  for the points ( ) ( )0 0 0 0 0 0, , , = , lzx x q q Mβ β ∈&& &  and 

the value of the right derivative of D V+  due to system (48) on each -Γ sector 

( )0 0,q qδΩ & . First of all, note that under the condition ( )0 0, lzq q M∈&  the equalities 

0 0q =& , 0 = 0q&&  и 1 =N mg , 2 2=N m g , 0
1 =TQ c x , 

0
2 2= sinTQ m rg β  hold. 

 
Taking account of the fact that under the condition 0 = lzβ β  the signs of β  

and sin β  coincide within a sufficiently small neighborhood of point 0β , consider the 

following possible cases  (the values of D V+  corresponds to points 

( ) ( ) ( )0 0, , , = , ,x x q q q qδβ β ∈Ω&& & & ): 

 
1) 0 < lzx x , 0 < lzβ β  ( ( )0 0,q q&  is the internal point of the rectangle 

lzM ). Hence 

( ) ( ){ }0 0, = , : = 0, = 0q q q q x βΓ && & & , = 0D V+ ; 

 
2) 0 < lzx x , 0 = lzβ β  or 0 < lzβ β , 0 = lzx x  (sides of the rectangle 

lzM  without nodes). Hence 
 

( ) ( ){ }0 0 0, = , : = 0, 0q q q q x ββΓ ≤&& & & , 
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2

2 2

, > ;
=

sin || , ;

lz

lz

w
D V

w m gr

β β

β β β β
+

⎧−
⎪
⎨
− + ≤⎪⎩

&
 

 

or, respectively, ( ) ( ){ }0 0 0, = , : = 0, 0q q q q xxβΓ ≤&& & & , 

 

1

1

, > ;
=

|| , ;

lz

lz

w x x
D V

w c x x x x
+

⎧−⎪
⎨
− + ≤⎪⎩ &

 

 
3) 0 = lzx x , 0 = lzβ β  (nodes of the rectangle lzM ). Hence 

 

( ) ( ){ }0 0 0 0, = , : 0, 0q q q q xxββΓ ≤ ≤&& & & , 

 

1 2

1 2

1 2 2

1 2 2

, > , > ;

|| , , > ;
=

| sin || |, , > ;

|| sin || , , ;

lz lz

lz lz

lz lz

lz lz

w w x x

w w c x x x x
D V

w w m gr x x

w w c x x m gr x x

β β

β β

β β β β

β β β β

+

⎧− −
⎪
⎪− − + ≤
⎪
⎨
− − + ≤⎪
⎪
⎪− − + + ≤ ≤⎩

&

&

&&

 

 
Hence we have 9 possible forms (kinds) of sets Γ , and within each -Γ sector 

the generalized velocities x& , β&  either turn zero or retain their signs, which are 

opposite to signs of 0x  and 0β , respectively. 
 
 
In case 1, sign definiteness of ( ),D V q q+ &  does not need any further analysis. 

In cases 2 and 3, the sign of D V+  is determined by relations between the values of  
 
functions 1 1f N  and c x , 2 2f N  and 2 sinm gr β  on set ( ),q qΓ & . It can 

readily be noticed that the condition 0D V+ ≤  holds (within the -Γ sector) when for 
any point ( )0 0, lzq q M∈&  along each solution of equations (48) with the values lying 

in the -Γ sector ( )0 0,q qδΩ &  the inequality  

 
2sin cos 0D β β β β+ + ≥& &                        (49) 

holds. 
 

Indeed, in this case, from the inequality lzx x≤  we have 
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1 1 1f N f mg c x≥ ≥  and from the inequality lzβ β≤  we have 

2 2 2 2 2 sinf N f m g m gr β≥ ≥ , whence, on account of the form of D V+ , we 

obtain that 0D V+ ≤ . 
 
In order to prove (49), suppose the opposite. Since function ( )D tβ+ &  is right 

continuous (i.e. the solution if R- right), the following inequality is satisfied 
 

2sin cos < 0D β β β β+ +& &          (50) 

 
on some small segment [ )0, α . By integrating (50), we obtain that 

( ) ( ) ( ) ( )sin 0 sin 0 < 0t tβ β β β−& &  for all ( )0,t α∈ . If 0 < lzβ β  then 

( ) = 0tβ&  for sufficiently small > 0t  and, consequently, (49) holds. Therefore, (50) 

will be satisfied only under the condition that 0 = lzβ β . Hence it is possible to 

assume that ( )sin 0tβ ≠ . Let for the purpose of definiteness ( )sin > 0tβ . Hence 

( ) 0tβ ≤&  and, consequently, ( )sin tβ  is a nonincreasing function. Therefore, the 

inequality ( ) ( )sin sin 0tβ β≤  holds, and so, on account of the condition 

( ) 0tβ ≤& , we have ( ) ( ) ( ) ( ) ( ) ( )0 sin 0 sin 0 sint t tβ β β β β β≥ ≥& & & . 

 
Consequently, ( ) ( )0 tβ β≥& & , whence we obtain ( )0 0D β+ ≥& . But then 

inequality (50) is not satisfied for 0t = , what contradicts to the above assumption. 
 
The case when ( )sin < 0tβ  is considered similarly and also leads to the 

contradiction with  (50). 
 
Therefore, all the conditions of the theorem on stability, according to which the  

 
lower zone of stagnation is stable, are satisfied for equations (50), for the set lzM  and 

for the function V . 
 
In order to investigate asymptotic stability of lzM  with the aid of  

 
Theorem 5.3.1, consider the functions 2

1 = 2V x , 2
2 = 2V β . 

 
Hence for any ( )0 0, lzq q M∈&  and for -Γ sectors ( )0 0,q qδΩ &  the conditions 
 

1 2= 0, = 0D V xx D V ββ+ +≤ ≤&& . 

 
are satisfied. If either 0 0x =  or 0 0β =  then for a sufficiently small 0δ >  for all 
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( ) ( )0 0, ,q q q qδ∈Ω& &  it is true that either 0x =&  or, respectively, 0β =& . If 0 0x ≠  

and 0 0β ≠  then 
 

( ) ( ) ( ){ }1 2= 0 = 0 = , : = 0, = 0E D V E D V q q x β+ + && &I . 

 
Therefore, the conditionвсегда выполняется 
 

( ) ( ) ( ) ( ){ }0 0 1 2, = 0 = 0 , : = 0, = 0q q E D V E D V q q xδ β+ +Ω ⊂ && & &I I  

 
does not hold always, and, according to Theorem 3.1, lzM  is asymptotically stable. 
 
 

 

β

x

lzM

0, 0x β= =&&

0, 0x β≤ =&&0, 0x β≤ ≥&&  0, 0x β≤ ≤&&

0, 0x β= ≥&&  0, 0x β= ≤&&

0, 0x β≥ ≥&&  0, 0x β≥ =&& 0, 0x β≥ ≤&&  
 

Figure 3. The lower zone of stagnation 
 
 

Note in conclusion that usage of -Γ sectors allows one to give explicit geometric 
interpretations of behavior of the motions in the vicinity of set M  of equilibria (both 
stable and unstable ones). This is because the behavior of trajectories within the 

-Γ sector may be substantially simplified. As far as system (48) is concerned, the phase 
space is represented by the 4-dimensional space of variable ( ), , ,x xβ β&& . 

Nevertheless, Fig.3 gives a sufficiently complete idea of behavior of the trajectories 
near the lower zone of stagnation. As regards -Γ sectors with the nodes inside the 
rectangle lzM , only steady motions are possible.  

5.5. Pointwise stability of equilibrium positions.  

Pointwise stability of internal equilibriua for dynamics equations is discussed 
herein. Such stability may be ensured by the structure of equations themselves, without 
any additional assumptions. 

Consider equations of dynamics (24) in the autonomous case. Introduce the 
denotation ( ) ( ) ( ), = , ,A

s s sQ q q g q q Q q q+& & & , = 1, ,s kK . 

 
 
D e f i n i t i o n . The equilibrium position ( ), 0q , для которого 
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>s s sf N Q  for all *= 1, ,s kK , называется внутренним. Множество всех 

внутренних положений равновесия обозначается 0M . 
 
Introduce the following denotations:  
 

10* *

*

= (0, , 0, , , )k k

k

q q q+
& & &K K

14243
, 

1* *= ( , , )k kq q q+
& & &K . 

Having put = 0sq&& , *= 1, ,s kK , in the equations of dynamics, having 

rejected the first three groups of equations and added the conditions = 0sq& , 

*= 1, ,s kK , to the 4th group, we obtain the following relations 
 

( )

( ) ( ) ( )

*

0*
*

= 1*

= 0 = 1, , ,

= , = 1, , .

s

k
i

si s
i k

q s k

a q q Q q q s k k
+

⎧
⎪⎪
⎨

+⎪
⎪⎩
∑

& K

&& & K
  (51) 

 
Let us consider (51) as a system of differential equations with phase variables in 

space 
2 *k kR −

/In order to avoid any changes in denotations and not to make emphasis 
on the relationship with equations of dynamics, let us take ( )*,q q&  in the capacity of 

such equations. The points ( )* 1

*

,0 ( , , , 0, , 0)k

k k

q q q
−

K K
14243

@ , where q  satisfies 

equalities ( ) ( )*, 0 = 0, ( = 1, ,sQ q s k k+ K , will be considered as equilibrium 
positions for the system (53). 

 
The set of all equilibrium positions corresponding to equations (51) is denoted 

by *M . If ( )0 , 0q  is an equilibrium position corresponding to the equations of 

dynamics, then ( )*
0 , 0q  is the corresponding equilibrium position for equations (51). 

Pointwise stability of equilibrium positions ( )0 , 0q M∈  is understood in the general  

 
sense. 

 
D e f i n i t i o n . Let us speak that the equilibrium position ( )0 , 0q M∈ is 

strongly asymptotically stable with respect to variables iq& , *= 1, ,i kK , if for any 

0ε >  and 0τ >  there exists 0δ >  such that any solution ( ) ( )( ),q t q t&  with the 

initial condition ( ) ( )( ) ( )00 , 0 , 0q q S qδ∈&  exists and satisfies the condition 

( ) ( )( ) ( )0, , 0q t q t S qε∈&  for all 0t ≥  and ( ) = 0iq t&  for all t τ≥ , 

*= 1, ,i kK . 
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T h e o r e m  5 . 5 . 1 . The internal equilibrium position ( ) 0
0 , 0q M∈  is 

stable if and only if the respective equilibrium position ( )* *
0 , 0q M∈ is stable. 

 
C o r o l l a r y  5 . 5 . 1. If *k k= in the dynamics equations then any internal 

equilibrium position ( )0 , 0q  is strongly asymptotically stable with respect to variables 

1 *, , kq q& &K . 
 
Below we assme that *k k= . By 0

topM  and M∂  we denote, respectively, the 

topological interior and the boundary of set M  with respect to the subspace 

( ){ }, : = 0, = 1, ,sL q q q s k& & K@ . 

 
T h e o r e m  5 .5.2. If 0 0topM ≠ /  and 0 0

topM M⊂  then 0 0=topM M , and 

any compact set 0
topK M⊂  is stable. Furthermore, for each 0τ >  there exists 

0δ >  such that for any solution ( ) ( ) ( )( )= ,z t q t q t&  of the dynamics equations 

with the initial condition ( ) 00z K δ∈  the inclusion ( ) 0
topz t M∈  hold for all t τ≥ . 

 
T h e o r e m  5 .5.3. Let set M ⊂ Ω  be compact, 0 0topM ≠ /  и 0 0

topM M⊂ . 

Hence 0 0=topM M , and set M  is stable if and only if M∂ is stable. 

 
In case of P. Painlevé’s example described above, the set equilibrium positions 

writes^ ( ){ }= , , 0, 0 : cos = 0M x θ θ . Since for each point ( ), , 0, 0x Mθ ∈ the 

conditions 1 1 1= 2 > 0f N f g  and 0
1 = 0TQ  hold, in accordance with the accepted 

definition, all the equilibrium positions from M  are internal. System (51) assumes the 
form: 

  
= 0,

= cos

x

r gθ θ

⎧⎪
⎨
⎪⎩

&

&&
       (52) 

As far as system (52) is concerned, the set equilibria *M  consists of the points 
( ), , 0x θ , for which cos = 0θ . 

 
Note in conclusion, the basis of the present paper has been formed by 

publications of the authors [34]-[44]. Note also that these investigations were later 
presented in papers [45] – [46], in which amore general class of equations of motion for 
mechanical systems with Coulomb’s friction was considered. Nevertheless, existence of 
right solutions was not proved in above papers, and the solution itself is defined with 
the use of some modification in the obtaining solutions of discontinuous systems in the 
sense of A.F. Filippov. 
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