Unified Approach to Real Numbers in Various Mathematical Settings

Davorin Lešnik
Department of Mathematics
Darmstadt University of Technology, Germany
lesnik@mathematik.tu-darmstadt.de

Niš, June 27th, 2013
Overview

Issue:

Classically equivalent definitions/constructions of reals \mathbb{R} differ constructively. The choice of reals is made depending on the setting—no unifying definition.

In classical analysis \mathbb{R} is given axiomatically ("Dedekind complete ordered field"), while constructive analysis explicitly refers to particular model(s) of reals.

Purpose of the talk:
- provide a setting-independent definition of reals \mathbb{R} by introducing streaks,
- show that standard constructions of reals satisfy our definition in their respective settings,
- study the structure of reals by noting that its pieces correspond to reflections on the category of streaks,
- observe that our definition enables us to do constructive analysis without referring to a specific model of reals.
Overview

Issue:

- Classically equivalent definitions/constructions of reals \mathbb{R} differ constructively. The choice of reals is made depending on the setting — no unifying definition.

- In classical analysis \mathbb{R} is given axiomatically ("Dedekind complete ordered field"), while constructive analysis explicitly refers to particular model(s) of reals.
Overview

Issue:

- Classically equivalent definitions/constructions of reals \mathbb{R} differ constructively. The choice of reals is made depending on the setting — no unifying definition.

- In classical analysis \mathbb{R} is given axiomatically ("Dedekind complete ordered field"), while constructive analysis explicitly refers to particular model(s) of reals.

Purpose of the talk:
Overview

Issue:
- Classically equivalent definitions/constructions of reals \mathbb{R} differ constructively. The choice of reals is made depending on the setting — no unifying definition.
- In classical analysis \mathbb{R} is given axiomatically ("Dedekind complete ordered field"), while constructive analysis explicitly refers to particular model(s) of reals.

Purpose of the talk:
- provide a setting-independent definition of reals \mathbb{R} by introducing *streaks*,
- show that standard constructions of reals satisfy our definition in their respective settings,
- study the structure of reals by noting that its pieces correspond to reflections on the category of streaks,
- observe that our definition enables us to do constructive analysis without referring to a specific model of reals.
Streaks
We define streaks and with them characterize number sets, including \(\mathbb{R} \).

Reflections
We observe that pieces of structure of reals correspond to reflections on the category of streaks.

Models
We observe that the standard constructions of reals satisfy our definition. Moreover, our theory provides explicit formulae for pieces of structure in each particular construction.

To do this, we use the language of category theory, particularly the universal property.
Setting

We have constructive set theory. It can be predicative — for every set \(X \) we have its powerclass \(P(X) \) which is not necessarily a set. \(N \) is assumed to be a set. Also, for every set \(X \) the collection of its sequences \(X^N \) is a set.

As an additional degree of freedom we assume that sets have intrinsic topology:

For every set \(X \) we have the classes of "open" and "closed" subsets \(O(X), Z(X) \subseteq P(X) \).

All maps between sets are continuous with regard to this topology.

Open sets are closed under countable unions and finite intersections.

Closed sets are closed under countable intersections and doubly complemented finite unions.

Disjoint unions of sets and quotients have the expected topology.

It follows that every decidable subset is open and closed. Hence classically the only possible intrinsic topology is the discrete one.
We have constructive set theory. It can be predicative — for every set X we have its powerclass $\mathcal{P}(X)$ which is not necessarily a set.
Setting

- We have constructive set theory. It can be predicative — for every set \(X \) we have its powerclass \(\mathcal{P}(X) \) which is not necessarily a set.

- \(\mathbb{N} \) is assumed to be a set. Also, for every set \(X \) the collection of its sequences \(X^\mathbb{N} \) is a set.
Setting

- We have constructive set theory. It can be predicative — for every set X we have its powerclass $\mathcal{P}(X)$ which is not necessarily a set.

- \mathbb{N} is assumed to be a set. Also, for every set X the collection of its sequences $X^\mathbb{N}$ is a set.

- As an additional degree of freedom we assume that sets have intrinsic topology:
Setting

- We have constructive set theory. It can be predicative — for every set X we have its powerclass $\mathcal{P}(X)$ which is not necessarily a set.

- \mathbb{N} is assumed to be a set. Also, for every set X the collection of its sequences $X^\mathbb{N}$ is a set.

- As an additional degree of freedom we assume that sets have *intrinsic topology*:
 - For every set X we have the classes of “open” and “closed” subsets $\mathcal{O}(X), \mathcal{Z}(X) \subseteq \mathcal{P}(X)$.
 - All maps between sets are continuous with regard to this topology.
 - Open sets are closed under countable unions and finite intersections.
 - Closed sets are closed under countable intersections and doubly complemented finite unions.
 - Disjoint unions of sets and quotients have the expected topology.

It follows that every decidable subset is open and closed. Hence classically the only possible intrinsic topology is the discrete one.
Informal definition: A streak is a
- strict “linear” archimedean order
- with as much algebraic structure as preserves this order (addition, as well as multiplication of positive elements)
- such that $<$ is open and \leq closed.

Intuition: Being a linear order forces a streak to lie on a line; being additionally archimedean forces it to lie on its finite part, i.e. on the real line. Hence \mathbb{R} can be characterized as the largest (in categorical terms, terminal) streak.
Definition: \((X, <, +, 0, \cdot, 1)\) is a **streak** when

- \(<\) is an asymmetric and cotransitive binary relation on \(X\)
 (hence \(a \# b := a < b \lor b < a\) is an apartness and \(a \leq b := \neg(b < a)\) a preorder),
- \(#\) is tight (equivalently, \(\leq\) is a partial order),
- \((X, +, 0)\) is a commutative monoid
 (therefore we can multiply elements of \(X\) with natural numbers),
- \((X_{>0}, \cdot, 1)\) is a commutative monoid and \(\cdot\) distributes over \(+\),
- \(a + x < b + x \iff a < b\) for all \(a, b, x \in X\),
- \(a \cdot x < b \cdot x \iff a < b\) for all \(a, b, x \in X_{>0}\),
- \(<\) is an open and \(\leq\) a closed subset of \(X \times X\),
- the **archimedean condition** holds: for all \(a, b, c, d \in X\) with \(b < d\) there exists \(n \in \mathbb{N}\) with \(a + n \cdot b < c + n \cdot d\).
Definition: A map $f : X \to Y$ is a **streak morphism** from $(X, <, +, 0, \cdot, 1)$ to $(Y, <, +, 0, \cdot, 1)$ when it preserves all the structure, i.e.

- $a < b \implies f(a) < f(b),$
- $f(a + b) = f(a) + f(b), \quad f(0) = 0,$
- $f(a \cdot b) = f(a) \cdot f(b), \quad f(1) = 1.$

Theorem: Streak morphisms are injective and for any two streaks there exists at most one morphism from the first to the second (i.e. streaks form a preorder category Str).

N is the initial (“smallest”) streak, \mathbb{Z} is the initial ring streak, \mathbb{Q} is the initial field streak.

Definition: \mathbb{R} is the terminal streak (i.e. for every streak X there exists a (unique) streak morphism $! : X \to \mathbb{R}$).
Definition: A map $f : X \to Y$ is a **streak morphism** from $(X, <, +, 0, \cdot, 1)$ to $(Y, <, +, 0, \cdot, 1)$ when it preserves all the structure, i.e.

- $a < b \implies f(a) < f(b)$,
- $f(a + b) = f(a) + f(b)$, $f(0) = 0$,
- $f(a \cdot b) = f(a) \cdot f(b)$, $f(1) = 1$.

Theorem: Streak morphisms are injective and for any two streaks there exists at most one morphism from the first to the second (i.e. streaks form a **preorder category** Str).
Definition: A map \(f : X \to Y \) is a **streak morphism** from \((X, <, +, 0, \cdot, 1)\) to \((Y, <, +, 0, \cdot, 1)\) when it preserves all the structure, i.e.

- \(a < b \implies f(a) < f(b) \),
- \(f(a + b) = f(a) + f(b) \), \(f(0) = 0 \),
- \(f(a \cdot b) = f(a) \cdot f(b) \), \(f(1) = 1 \).

Theorem: Streak morphisms are injective and for any two streaks there exists at most one morphism from the first to the second (i.e. streaks form a preorder category \(\text{Str} \)).

\(\mathbb{N} \) is the initial ("smallest") streak, \(\mathbb{Z} \) is the initial ring streak, \(\mathbb{Q} \) is the initial field streak.

Definition: \(\mathbb{R} \) is the terminal streak (i.e. for every streak \(X \) there exists a (unique) streak morphism \(!_X : X \to \mathbb{R} \)).
\(R \) has much more structure than a mere streak. The tool to exhibit and study it are **reflections** on the category of streaks.
\mathcal{R} has much more structure than a mere streak. The tool to exhibit and study it are **reflections** on the category of streaks.

Recall that a full subcategory $\mathcal{R} \subseteq \mathcal{C}$ of a category \mathcal{C} is **reflective** in \mathcal{C} when the inclusion functor $U: \mathcal{R} \hookrightarrow \mathcal{C}$ has a left adjoint $R: \mathcal{C} \to \mathcal{R}$.

In particular (up to isomorphism) R is a retraction and we have the **unit of the reflection** $\eta_X: X \to R(X)$ (the “insertion of generators”).
\(\mathcal{R} \) has much more structure than a mere streak. The tool to exhibit and study it are **reflections** on the category of streaks.

Recall that a full subcategory \(\mathcal{R} \subseteq \mathcal{C} \) of a category \(\mathcal{C} \) is **reflective** in \(\mathcal{C} \) when the inclusion functor \(U: \mathcal{R} \hookrightarrow \mathcal{C} \) has a left adjoint \(R: \mathcal{C} \rightarrow \mathcal{R} \).

In particular (up to isomorphism) \(R \) is a retraction and we have the **unit of the reflection** \(\eta_X: X \rightarrow R(X) \) (the “insertion of generators”).

Lemma: If \(\mathcal{R} \subseteq \mathcal{C} \) is a reflective subcategory and \(\mathcal{C} \) has a terminal object \(1 \), then \(R(1) \cong 1 \) and \(R(1) \) is a terminal object in both \(\mathcal{C} \) and \(\mathcal{R} \).
Reflections

\(\mathcal{R}\) has much more structure than a mere streak. The tool to exhibit and study it are reflections on the category of streaks.

Recall that a full subcategory \(\mathcal{R} \subseteq \mathcal{C}\) of a category \(\mathcal{C}\) is reflective in \(\mathcal{C}\) when the inclusion functor \(U: \mathcal{R} \hookrightarrow \mathcal{C}\) has a left adjoint \(R: \mathcal{C} \rightarrow \mathcal{R}\).

In particular (up to isomorphism) \(R\) is a retraction and we have the unit of the reflection \(\eta_X: X \rightarrow R(X)\) (the “insertion of generators”).

Lemma: If \(\mathcal{R} \subseteq \mathcal{C}\) is a reflective subcategory and \(\mathcal{C}\) has a terminal object 1, then \(R(1) \cong 1\) and \(R(1)\) is a terminal object in both \(\mathcal{C}\) and \(\mathcal{R}\).

Corollary: \(\mathcal{R}\) has every reflective structure.
Examples of reflections

Theorem: For any streak \(X \) the set \(\text{Ring}(X) \) of *formal differences* in \(X \) is again a streak. In fact, \(\text{Ring} \) is a reflection from streaks to ring streaks (denote its unit by \(\rho \)).
Examples of reflections

Theorem: For any streak X the set $\text{Ring}(X)$ of *formal differences* in X is again a streak. In fact, Ring is a reflection from streaks to ring streaks (denote its unit by ρ).

Theorem: For any streak X the *field of quotients* $\text{Field}(X)$ on $\text{Ring}(X)$ is again a streak. In fact, Field is a reflection from streaks to field streaks (denote its unit by ϕ).
Examples of reflections

Theorem: For any streak X the set $\text{Ring}(X)$ of *formal differences* in X is again a streak. In fact, Ring is a reflection from streaks to ring streaks (denote its unit by ρ).

Theorem: For any streak X the *field of quotients* $\text{Field}(X)$ on $\text{Ring}(X)$ is again a streak. In fact, Field is a reflection from streaks to field streaks (denote its unit by ϕ).

Theorem: For any streak X the sets X^\wedge and X^\vee of inhabited finite subsets of X, quotiented by a suitable equivalence relation, are streaks, closed under binary infima and suprema respectively. They define reflections from streaks to semilattice streaks which commute with each other up to isomorphism. Their composition gives a reflection from streaks to lattice streaks.
We conclude that \mathbb{R} is a lattice field streak.
We conclude that \mathbb{R} is a lattice field streak. For example, total multiplication on \mathbb{R} is given by

$$a \cdot b = !_{\text{Ring}(\mathbb{R})}(\rho_{\mathbb{R}}(a) \cdot \rho_{\mathbb{R}}(b)).$$
We conclude that \mathbb{R} is a lattice field streak. For example, total multiplication on \mathbb{R} is given by

$$a \cdot b = !_{\text{Ring}(\mathbb{R})}(\rho_{\mathbb{R}}(a) \cdot \rho_{\mathbb{R}}(b)).$$

We can define the **absolute value** on \mathbb{R} by

$$|a| := \sup\{a, -a\}$$

and hence the **euclidean metric**

$$d(a, b) := |a - b|.$$

The absolute value and the euclidean metric satisfy all the standard properties.
We conclude that \(\mathbb{R} \) is a lattice field streak. For example, total multiplication on \(\mathbb{R} \) is given by

\[
a \cdot b = !_{\text{Ring}(\mathbb{R})} \left(\rho_{\mathbb{R}}(a) \cdot \rho_{\mathbb{R}}(b) \right).
\]

We can define the **absolute value** on \(\mathbb{R} \) by

\[
|a| := \sup\{a, -a\}
\]

and hence the **euclidean metric**

\[
d(a, b) := |a - b|.
\]

The absolute value and the euclidean metric satisfy all the standard properties.

As usual the **metric balls** are given by

\[
B(a, r) := \{x \in \mathbb{R} \mid d(a, x) < r\}.
\]

Since \(<\) is open, so are the balls and the intrinsic topology of \(\mathbb{R} \) is always at least as strong as the euclidean topology.
Models of reals

Concrete models of reals are typically given as some sort of completion of rationals. However, other dense sets (such as dyadic rationals) work as well.
Concrete models of reals are typically given as some sort of completion of rationals. However, other dense sets (such as dyadic rationals) work as well.

In any streak X define for $q \in \mathbb{Q}$, $x \in X$

$$q < x := i < j + k \cdot x$$

where $q = \frac{i-j}{k}$, $i, j \in \mathbb{N}$, $k \in \mathbb{N}_{>0}$. Similarly for $x < q$.

Definition: A streak X is **dense** when for every $q, r \in \mathbb{Q}$ with $q < r$ there exists $x \in X$ with $q < x < r$.

Also, for any two streak X, Y define $x < y := \exists q \in \mathbb{Q}. x < q < y$ for $x \in X, y \in Y$.
Cauchy reals

Lemma: For any streak X the set of its *Cauchy sequences* $CS(X)$ is a “non-tight streak” and the set of their equivalence classes $CC(X)$ (the “Cauchy completion” of X) is a streak. The embedding of X as constant sequences is a streak morphism.
Cauchy reals

Lemma: For any streak X the set of its *Cauchy sequences* $CS(X)$ is a “non-tight streak” and the set of their equivalence classes $CC(X)$ (the “Cauchy completion” of X) is a streak. The embedding of X as constant sequences is a streak morphism.

Definition: A streak X is called *Cauchy complete* when this embedding $\gamma_X : X \to CC(X)$ is an isomorphism.
Cauchy reals

Lemma: For any streak X the set of its *Cauchy sequences* $CS(X)$ is a “non-tight streak” and the set of their equivalence classes $CC(X)$ (the “Cauchy completion” of X) is a streak. The embedding of X as constant sequences is a streak morphism.

Definition: A streak X is called *Cauchy complete* when this embedding $\gamma_X : X \to CC(X)$ is an isomorphism.

Theorem: If countable choice holds, then CC is a reflection of streaks into Cauchy complete streaks, and for any dense streak X the streak $CC(X)$ is terminal — thus a model of \mathbb{R}.

Idea of proof: $f : Y \to CC(X)$ is defined $f(y) := [a]$ where a_n is chosen in X in the way that $2n \cdot a_n < 2n \cdot y + 1$ and $2n \cdot y < 2n \cdot a_n + 1$.

Without countable choice we might not get a terminal streak that way — CC might not even be idempotent.
Without countable choice we might not get a terminal streak that way — CC might not even be idempotent. But the following still always holds.

Theorem: Any terminal streak \mathbb{R} is Cauchy complete.
Without countable choice we might not get a terminal streak that way — CC might not even be idempotent. But the following still always holds.

Theorem: Any terminal streak \mathbb{R} is Cauchy complete.

Consider the following diagram of “not necessarily tight streaks” and their morphisms.

$$
\begin{array}{ccc}
CS(\mathbb{R}) & \xrightarrow{\theta_{CS(\mathbb{R})}} & CC(\mathbb{R}) \\
\mathbb{R} & \xrightarrow{\gamma_{\mathbb{R}}} & CC(\mathbb{R}) \\
\mathbb{R} & \xrightarrow{c_{\mathbb{R}}} & CS(\mathbb{R}) \\
\end{array}
$$

Define $\lim_{\mathbb{R}} := \gamma_{\mathbb{R}}^{-1} \circ \theta_{CS(\mathbb{R})} = !CC(\mathbb{R}) \circ \theta_{CS(\mathbb{R})}$.
Without countable choice we might not get a terminal streak that way — CC might not even be idempotent. But the following still always holds.

Theorem: Any terminal streak \(R \) is Cauchy complete.

Consider the following diagram of “not necessarily tight streaks” and their morphisms.

\[
\begin{array}{ccc}
CS(R) & \xrightarrow{\theta_{CS(R)}} & CC(R) \\
\downarrow_{\theta_{CS(R)}} & & \\
R & \sim & CC(R)
\end{array}
\]

Define \(\lim_R := \gamma_R^{-1} \circ \theta_{CS(R)} = !cc(R) \circ \theta_{CS(R)} \).

Theorem: We have \(\lim_R \circ c_R = \text{Id}_R \), \(\lim_R (a + b) = \lim_R (a) + \lim_R (b) \), \(\lim_R (a \cdot b) = \lim_R (a) \cdot \lim_R (b) \), and \(\lim_R \) satisfying the usual definition of a limit:

\[
x = \lim_R (a) \iff \forall \epsilon \in R_{>0}. \exists n \in \mathbb{N}. \forall i \in \mathbb{N}_{\geq n}. d(x, a_i) < \epsilon.
\]
Dedekind reals

For a streak X let $\mathcal{D}(X)$ denote the collection of those (two-sided) Dedekind cuts, which are open and their complements closed, and remain so even after translations.

Theorem: If $O(X)$ is a set, then so is $\mathcal{D}(X)$. If X is furthermore a dense streak, then $\mathcal{D}(X)$ is a terminal streak — thus a model of \mathbb{R}.

Idea of proof: $f: Y \to \mathcal{D}(X)$ is given by $f(y) := (X < y, X > y)$.

Remark: A related construction is to give reals via the interval domain. Taking open intervals is just a rephrasement of Dedekind reals, so it works as above. Taking closed intervals works too, except for the topological conditions; it works if we e.g. postulate discrete intrinsic topology overall.
Dedekind reals

For a streak X let $\mathcal{D}(X)$ denote the collection of those (two-sided) Dedekind cuts, which are open and their complements closed, and remain so even after translations.

Theorem: If $\mathcal{O}(X)$ is a set, then so is $\mathcal{D}(X)$. If X is furthermore a dense streak, then $\mathcal{D}(X)$ is a terminal streak — thus a model of \mathbb{R}.

Idea of proof: $f: Y \to \mathcal{D}(X)$ is given by $f(y) := (X_{<y}, X_{>y})$.

Remark: A related construction is to give reals via the interval domain. Taking open intervals is just a rephrasement of Dedeking reals, so it works as above. Taking closed intervals works too, except for the topological conditions; it works if we e.g. postulate discrete intrinsic topology overall.
Dedekind reals

For a streak X let $\mathcal{D}(X)$ denote the collection of those (two-sided) Dedekind cuts, which are open and their complements closed, and remain so even after translations.

Theorem: If $\mathcal{O}(X)$ is a set, then so is $\mathcal{D}(X)$. If X is furthermore a dense streak, then $\mathcal{D}(X)$ is a terminal streak — thus a model of \mathbb{R}.

Idea of proof: $f : Y \to \mathcal{D}(X)$ is given by $f(y) := (X_{<y}, X_{>y})$.

Remark: A related construction is to give reals via the *interval domain*. Taking open intervals is just a rephrasing of Dedekind reals, so it works as above. Taking closed intervals works too, except for the topological conditions; it works if we e.g. postulate discrete intrinsic topology overall.
Reals as a formal space/locale/classical topological space

The categories of formal spaces/locales/topological spaces do not allow interpretation of sufficient amount of logic to serve as mathematical universes. Nevertheless it is interesting to consider what are their terminal streaks.
Reals as a formal space/locale/classical topological space

The categories of formal spaces/locales/topological spaces do not allow interpretation of sufficient amount of logic to serve as mathematical universes. Nevertheless it is interesting to consider what are their terminal streaks.

Theorem:
- The formal space of reals is a terminal streak in the category of formal spaces.
- The locale of reals is a terminal streak in the category of locales.
- The topological space of reals is a terminal streak in the category of topological spaces.

Idea of proof (for topological spaces): View \mathbb{R} as a formal space, its basis $\overline{\mathbb{Q}} \times \overline{\mathbb{Q}}$ given by “(possibly infinite) rational intervals”. Define $f : Y \to \mathbb{R}$ by $f(y) := \{(q, r) \in \overline{\mathbb{Q}} \times \overline{\mathbb{Q}} \mid q < y < r\}$. Note: terminality implies that \mathbb{R} must have the euclidean topology!
The categories of formal spaces/locales/topological spaces do not allow interpretation of sufficient amount of logic to serve as mathematical universes. Nevertheless it is interesting to consider what are their terminal streaks.

Theorem:
- The formal space of reals is a terminal streak in the category of formal spaces.
- The locale of reals is a terminal streak in the category of locales.
- The topological space of reals is a terminal streak in the category of topological spaces.

Idea of proof (for topological spaces): View \(\mathbb{R} \) as a formal space, its basis \(\overline{\mathbb{Q}} \times \overline{\mathbb{Q}} \) given by “(possibly infinite) rational intervals”. Define \(f : Y \to \mathbb{R} \) by \(f(y) := \left\{ (q, r) \in \overline{\mathbb{Q}} \times \overline{\mathbb{Q}} \mid q < y < r \right\} \).

Note: terminality implies that \(\mathbb{R} \) must have the euclidean topology!
Concluding remarks

- We have seen that the definition of \(\mathbb{R} \) as the terminal streak works independently of the setting.

- We have seen that reflections on the category of streaks (including the field and the lattice structure) not only equip \(\mathbb{R} \) with additional structure on the theoretical level, but also provide explicit formulae for this structure in specific models of \(\mathbb{R} \).

- In particular, the existence of the absolute value, the euclidean metric and the limit operator on \(\mathbb{R} \) follows from the definition. We can do constructive analysis without using a specific model of \(\mathbb{R} \).

- Similar ideas can be used to characterize lower reals, upper reals or metric completions.
Other authors have also used universal property to define reals/intervals:

- **D. Pavlović and V. Pratt** (Paper: On coalgebra of real numbers) give the interval $\mathbb{R}_{[0,1]}$ as the terminal coalgebra of the functor $X \mapsto X \cdot \omega$.
 - Doesn’t work constructively.
 - Gives a semiclosed interval rather than \mathbb{R} directly.

- **P. Freyd** (Paper: Algebraic real analysis) uses the midpoint operation to give the interval $\mathbb{R}_{[0,1]}$ as the terminal coalgebra for $X \mapsto X \lor X$.
 - The original version uses classical logic, but Freyd checks that a modified definition is satisfied by reals via signed digit representation assuming dep. choice, and by Dedekind reals in sheaf topoi. Does it work in general?
 - Can other operations be defined?
 - Gives a closed interval rather than \mathbb{R} directly.

- **M. Escardó and A. Simpson** (Paper: A universal characterization of the closed euclidean interval) use the infinitary version of the midpoint operation to give the interval $\mathbb{R}_{[0,1]}$ as the free cancellative iterative midpoint object over two generators.
 - Works constructively, assuming countable choice (it gives the Cauchy completion of diadic rationals on a closed interval).
 - Gives a closed interval rather than \mathbb{R} directly.
My thanks to the organizers for the invitation.