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Nǐs, June 27th, 2013



Overview Streaks Reflections Models Conclusion

Overview

Issue:

Classically equivalent definitions/constructions of reals R differ
constructively. The choice of reals is made depending on the setting
— no unifying definition.

In classical analysis R is given axiomatically (“Dedekind complete
ordered field”), while constructive analysis explicitly refers to
particular model(s) of reals.

Purpose of the talk:

provide a setting-independent definition of reals R by introducing
streaks,

show that standard constructions of reals satisfy our definition in
their respective settings,

study the structure of reals by noting that its pieces correspond to
reflections on the category of streaks,

observe that our definition enables us to do constructive analysis
without refering to a specific model of reals.
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Contents

Streaks
We define streaks and with them characterize number sets, including
R.

Reflections
We observe that pieces of structure of reals correspond to reflections
on the category of streaks.

Models
We observe that the standard constructions of reals satisfy our
definition. Moreover, our theory provides explicit formulae for pieces
of structure in each particular construction.

To do this, we use the language of category theory, particularly the
universal property.
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Setting

We have constructive set theory. It can be predicative — for every
set X we have its powerclass P(X ) which is not necessarily a set.

N is assumed to be a set. Also, for every set X the collection of its
sequences XN is a set.

As an additional degree of freedom we assume that sets have
intrinsic topology:

For every set X we have the classes of “open” and “closed” subsets
O(X ),Z(X ) ⊆ P(X ).
All maps between sets are continuous with regard to this topology.
Open sets are closed under countable unions and finite intersections.

Closed sets are closed under countable intersections and doubly
complemented finite unions.
Disjoint unions of sets and quotients have the expected topology.

It follows that every decidable subset is open and closed. Hence
classically the only possible intrinsic topology is the discrete one.
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Streaks

Informal definition: A streak is a

strict “linear” archimedean order

with as much algebraic structure as preserves this order (addition, as
well as multiplication of positive elements)

such that < is open and ≤ closed.

Intuition: Being a linear order forces a streak to lie on a line; being
additionally archimedean forces it to lie on its finite part, i.e. on the real
line. Hence R can be characterized as the largest (in categorical terms, terminal)

streak.
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Definition: (X , <,+, 0, ·, 1) is a streak when

< is an asymmetric and cotransitive binary relation on X
(hence a # b := a < b ∨ b < a is an apartness and a ≤ b := ¬(b < a) a preorder),

# is tight (equivalently, ≤ is a partial order),

(X ,+, 0) is a commutative monoid
(therefore we can multiply elements of X with natural numbers),

(X>0, ·, 1) is a commutative monoid and · distributes over +,

a + x < b + x ⇐⇒ a < b for all a, b, x ∈ X ,

a · x < b · x ⇐⇒ a < b for all a, b, x ∈ X>0,

< is an open and ≤ a closed subset of X × X ,

the archimedean condition holds: for all a, b, c , d ∈ X with b < d
there exists n ∈ N with a + n · b < c + n · d .
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Definition: A map f : X → Y is a streak morphism from
(X , <,+, 0, ·, 1) to (Y , <,+, 0, ·, 1) when it preserves all the structure,
i.e.

a < b =⇒ f (a) < f (b),

f (a + b) = f (a) + f (b), f (0) = 0,

f (a · b) = f (a) · f (b), f (1) = 1.

Theorem: Streak morphisms are injective and for any two streaks there
exists at most one morphism from the first to the second (i.e. streaks
form a preorder category Str).

N is the initial (“smallest”) streak, Z is the initial ring streak, Q is the
initial field streak.

Definition: R is the terminal streak (i.e. for every streak X there exists a
(unique) streak morphism !X : X → R).
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Reflections

R has much more structure than a mere streak. The tool to exhibit and
study it are reflections on the category of streaks.

Recall that a full subcategory R ⊆ C of a category C is reflective in C
when the inclusion functor U : R ↪→ C has a left adjoint R : C→ R.

In particular (up to isomorphism) R is a retraction and we have the unit
of the reflection ηX : X → R(X ) (the “insertion of generators”).

Lemma: If R ⊆ C is a reflective subcategory and C has a terminal object
1, then R(1) ∼= 1 and R(1) is a terminal object in both C and R.

Corollary: R has every reflective structure.
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Examples of reflections

Theorem: For any streak X the set Ring(X ) of formal differences in X is
again a streak. In fact, Ring is a reflection from streaks to ring streaks
(denote its unit by ρ).

Theorem: For any streak X the field of quotients Field(X ) on Ring(X )
is again a streak. In fact, Field is a reflection from streaks to field streaks
(denote its unit by φ).

Theorem: For any streak X the sets X∧ and X∨ of inhabited finite
subsets of X , quotiented by a suitable equivalence relation, are streaks,
closed under binary infima and suprema respectively. They define
reflections from streaks to semilattice streaks which commute with each
other up to isomorphism. Their composition gives a reflection from
streaks to lattice streaks.
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We conclude that R is a lattice field streak.

For example, total
multiplication on R is given by

a · b = !Ring(R)

(
ρR(a) · ρR(b)

)
.

We can define the absolute value on R by

|a| := sup{a,−a}

and hence the euclidean metric

d(a, b) := |a− b|.

The absolute value and the euclidean metric satisfy all the standard
properties.

As usual the metric balls are given by

B (a, r) := {x ∈ R | d(a, x) < r} .

Since < is open, so are the balls and the intrinsic topology of R is always
at least as strong as the euclidean topology.
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Models of reals

Concrete models of reals are typically given as some sort of completion of
rationals. However, other dense sets (such as dyadic rationals) work as
well.

In any streak X define for q ∈ Q, x ∈ X

q < x := i < j + k · x

where q = i−j
k , i , j ∈ N, k ∈ N>0. Similarly for x < q.

Definition: A streak X is dense when for every q, r ∈ Q with q < r
there exists x ∈ X with q < x < r .

Also, for any two streak X , Y define x < y := ∃ q ∈Q . x < q < y for
x ∈ X , y ∈ Y .
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Cauchy reals

Lemma: For any streak X the set of its Cauchy sequences CS(X ) is a
“non-tight streak” and the set of their equivalence classes CC (X ) (the
“Cauchy completion” of X ) is a streak. The embedding of X as constant
sequences is a streak morphism.

Definition: A streak X is called Cauchy complete when this embedding
γX : X → CC (X ) is an isomorphism.

Theorem: If countable choice holds, then CC is a reflection of streaks
into Cauchy complete streaks, and for any dense streak X the streak
CC (X ) is terminal — thus a model of R.

Idea of proof: f : Y → CC (X ) is defined f (y) := [a] where an is chosen
in X in the way that 2n · an < 2n · y + 1 and 2n · y < 2n · an + 1.
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Without countable choice we might not get a terminal streak that way —
CC might not even be idempotent.

But the following still always holds.

Theorem: Any terminal streak R is Cauchy complete.

Consider the following diagram of “not necessarily tight streaks” and
their morphisms.

CS(R)

θCS(R)

��
R

cR

<<zzzzzzzzz
γR

∼= // CC (R)

Define limR := γ−1
R ◦ θCS(R) = !CC(R) ◦ θCS(R).

Theorem: We have limR ◦cR = IdR, limR(a + b) = limR(a) + limR(b),
limR(a · b) = limR(a) · limR(b), and limR satisfies the usual definition of a
limit:

x = limR(a) ⇐⇒ ∀ ε∈R>0 .∃ n∈N .∀ i ∈N≥n . d(x , ai ) < ε.
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Dedekind reals

For a streak X let D(X ) denote the collection of those (two-sided)
Dedekind cuts, which are open and their complements closed, and remain
so even after translations.

Theorem: If O(X ) is a set, then so is D(X ). If X is furthermore a dense
streak, then D(X ) is a terminal streak — thus a model of R.

Idea of proof: f : Y → D(X ) is given by f (y) := (X<y ,X>y ).

Remark: A related construction is to give reals via the interval domain.
Taking open intervals is just a rephrasement of Dedeking reals, so it works
as above. Taking closed intervals works too, except for the topological
conditions; it works if we e.g. postulate discrete intrinsic topology overall.
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Reals as a formal space/locale/classical topological space

The categories of formal spaces/locales/topological spaces do not allow
interpretation of sufficient amount of logic to serve as mathematical
universes. Nevertheless it is interesting to consider what are their
terminal streaks.

Theorem:

The formal space of reals is a terminal streak in the category of
formal spaces.

The locale of reals is a terminal streak in the category of locales.

The topological space of reals is a terminal streak in the category of
topological spaces.

Idea of proof (for topological spaces): View R as a formal space, its basis
Q×Q given by “(possibly infinite) rational intervals”. Define f : Y → R
by f (y) :=

{
(q, r) ∈ Q×Q

∣∣ q < y < r
}

.

Note: terminality implies that R must have the euclidean topology!
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Concluding remarks

We have seen that the definition of R as the terminal streak works
independently of the setting.

We have seen that reflections on the category of streaks (including
the field and the lattice structure) not only equip R with additional
structure on the theoretical level, but also provide explicit formulae
for this structure in specific models of R.

In particular, the existence of the absolute value, the euclidean
metric and the limit operator on R follows from the definition. We
can do constructive analysis without using a specific model of R.

Similar ideas can be used to characterize lower reals, upper reals or
metric completions.
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Other authors have also used universal property to define reals/intervals:

D. Pavlović and V. Pratt (Paper: On coalgebra of real numbers) give the
interval R[0,1) as the terminal coalgebra of the functor X 7→ X · ω.

Doesn’t work constructively.

Gives a semiclosed interval rather than R directly.

P. Freyd (Paper: Algebraic real analysis) uses the midpoint operation to
give the interval R[0,1] as the terminal coalgebra for X 7→ X ∨ X .

The original version uses classical logic, but Freyd checks that a modified
definition is satisfied by reals via signed digit representation assuming
dep. choice, and by Dedekind reals in sheaf topoi. Does it work in general?
Can other operations be defined?

Gives a closed interval rather than R directly.

M. Escardó and A. Simpson (Paper: A universal characterization of the closed

euclidean interval) use the infinitary version of the midpoint operation to
give the interval R[0,1] as the free cancellative iterative midpoint
object over two generators.

Works constructively, assuming countable choice (it gives the Cauchy
completion of diadic rationals on a closed interval).

Gives a closed interval rather than R directly.
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