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Example

Knowledge base:

if A1 then B1

if A2 then B2

if A3 then B3

. . .

from an expert system (MYCIN, PROSPECTOR, . . . )
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Knowledge base with certainty factors:

if A1 then B1 (cf c1)
if A2 then B2 (cf c2)
if A3 then B3 (cf c3)
. . .

Uncertain knowledge: from statistics, our experiences and beliefs, etc.

Nils Nilsson (Probabilistic logic, AI 28, 1986): generalization of
classical logic for dealing with uncertainties

To check consistency of (finite) sets of sentences.

To deduce probabilities of conclusions from uncertain premisses.
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How Modus Ponens can be generalized when one assigns probabilities:

Prob(A) = a
Prob(A→ B) = b
Prob(B) =?

Prob(A) + Prob(A→ B)− 1 ≤ P(B) ≤ Prob(A→ B)

Similar to Boole’s procedure
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How Modus Ponens can be generalized when one assigns probabilities:

Prob(A) = a
Prob(A→ B) = b
Prob(B) =?

Prob(A) + Prob(A→ B)− 1 ≤ P(B) ≤ Prob(A→ B)

Similar to Boole’s procedure
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Proof-theoretic approaches:

H. Gaifman. A Theory of Higher Order Probabilities. In: Proceedings
of the Theoretical Aspects of Reasoning about Knowledge (edts. J.Y.
Halpern), Morgan-Kaufmann, San Mateo, California, 275–292. 1986.

M. Fattorosi-Barnaba and G. Amati. Modal operators with
probabilistic interpretations I. Studia Logica 46(4), 383–393. 1989.

R. Fagin, J. Halpern and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation 87(1-2):78 – 128. 1990.

M. Rašković. Classical logic with some probability operators.
Publications de l’Institut Mathématique, n.s. 53(67), 1 – 3. 1993.

R. Fagin and J. Halpern. Reasoning about knowledge and probability.
Journal of the ACM, 41(2):340–367, 1994.

A. Frish and P. Haddawy. Anytime deduction for probabilistic logic.
Artificial Intelligence 69, 93 – 122. 1994.
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The probabilistic logics allow strict reasoning about probabilities using
well-defined syntax and semantics

Formulas in these logics remain either true or false

Formulas do not have probabilistic (numerical) truth values

The probability logics are not fuzzy logics

The probability that a particular bird A flies is at least 0.75

P≥0.75Fly(A)

µ({w : w |= Fly(A)}) ≥ 0.75
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Language:

Var = {p, q, r , . . .} (propositional letters), connectives ¬ and ∧
P≥s , where s ∈ Q ∩ [0, 1]

ForC - the set of classical propositional formulas

Basic probabilistic formula: P≥sα for α ∈ ForC , s ∈ Q ∩ [0, 1]

ForP - Boolean combinations of basic probabilistic formulas

P<sα means ¬P≥sα, . . .

(P≥sα ∧ P<t(α→ β))→ P=rβ

P≥sP≥tα 6∈ For

β ∨ P≥sα 6∈ For
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A probabilistic model M = 〈W ,H, µ, v〉:
W is a nonempty set of elements called worlds,
H is an algebra of subsets of W ,
µ : H → [0, 1] is a finitely additive probability measure, and
v : W ×Var→ {>,⊥} is a valuation

Measurable models

α ∈ ForC
[α] = {w ∈W : w |= α}
[α] ∈ H
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Satisfiability:

if α ∈ ForC , M |= α if (∀w ∈W )v(w)(α) = >
M |= P≥sα if µ([α]M) ≥ s,

if A ∈ ForP , M |= ¬A if M 6|= A,

if A,B ∈ ForP , M |= A ∧ B if M |= A and M |= B.

A set of formulas F = {A1,A2, . . .}, is satisfiable if there is a model M,
M |= Ai , i = 1, 2, . . ..
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Providing a sound and complete axiom system

the simple completeness (every consistent formula is satisfiable, |= A iff
` A)
the extended completeness (every consistent set of formulas is
satisfiable)

Decidability (there is a procedure which decides if an arbitrary
formula formula is valid)

Compactness (a set of formulas is satisfiable iff every finite subset is
satisfiable).
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Inherent non-compactness:

F = {¬P=0α} ∪ {P<1/nα : n is a positive integer}

Fk = {¬P=0α,P<1/1α,P<1/2α, . . . ,P<1/kα}
c : 0 < c < 1

k

a model M, µ[α] = c

M satisfies every Fk , but does not satisfy F

finitary axiomatization + extended completeness imply compactness

finitary axiomatization for a real valued probabilistic logic: there are
consistent sets that are not satisfiable
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Restrictions:

on ranges of probabilities: {0, 1
n ,

2
n , . . . ,

n−1
n , 1}

infinitary axiomatization
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all instances of classical propositional tautologies

axioms for probabilistic reasoning

P≥0α
P≤rα→ P<sα, s > r
P<sα→ P≤sα
(P≥rα ∧ P≥sβ ∧ P≥1(¬(α ∧ β)))→ P≥min(1,r+s)(α ∨ β)
(P≤rα ∧ P<sβ)→ P<r+s(α ∨ β), r + s ≤ 1

inference rules

From Φ and Φ→ Ψ infer Ψ.
From α infer P≥1α.
From A→ P≥s− 1

k
α, for every integer k ≥ 1

s , and s > 0 infer
A→ P≥sα.
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all instances of classical propositional tautologies

axioms for probabilistic reasoning

P≥0α
P≤rα→ P<sα, s > r
P<sα→ P≤sα
(P≥rα ∧ P≥sβ ∧ P≥1(¬(α ∧ β)))→ P≥min(1,r+s)(α ∨ β)
(P≤rα ∧ P<sβ)→ P<r+s(α ∨ β), r + s ≤ 1

inference rules

From Φ and Φ→ Ψ infer Ψ.
From α infer P≥1α.
From A→ P≥s− 1

k
α, for every integer k ≥ 1

s , and s > 0 infer
A→ P≥sα.
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Proof from the set of formulas (F ` ϕ):

at most denumerable sequence of formulas ϕ0, ϕ1, . . . , ϕ, such that
every ϕi is an axiom or a formula from the set F , or it is derived from
the preceding formulas by an inference rule

A formula ϕ is a theorem (` ϕ) if it is deducible from the empty set.

A set F of formulas is consistent if there are at least a classical
formula and at least a probabilistic formula that are not deducible
from F .

Object language is countable, formulas are finite. Only proofs are
allowed to be infinite.
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Proof from the set of formulas (F ` ϕ):

at most denumerable sequence of formulas ϕ0, ϕ1, . . . , ϕ, such that
every ϕi is an axiom or a formula from the set F , or it is derived from
the preceding formulas by an inference rule

A formula ϕ is a theorem (` ϕ) if it is deducible from the empty set.

A set F of formulas is consistent if there are at least a classical
formula and at least a probabilistic formula that are not deducible
from F .

Object language is countable, formulas are finite. Only proofs are
allowed to be infinite.
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The main proof-theoretical results (F - set of formulas):

Theorem (Deduction)

F , φ ` ψ iff F ` φ→ ψ.

Theorem (Extended completeness (1))

F is consistent iff F is satisfiable.

Theorem (Extended completeness (2))

F ` φ iff F |= φ.

Transfer of the results to the case of σ-additive probabilities.
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Decidability of the satisfiability problem for the probabilistic logic (PSAT):

Theorem

PSAT is NP-complete.

Early papers:

G. Georgakopoulos, D. Kavvadias, and C. Papadimitriou.
Probabilistic satisfiability. Journal of Complexity 4(1):1–11. 1988.

R. Fagin, J. Halpern and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation 87(1-2):78 – 128. 1990.

B. Jaumard, P. Hansen, and M. P. de Aragao. Column generation
methods for probabilistic logic. ORSA Journal on Computing
3:135–147. 1991.
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∧k
j=1 aj

1Prob(CDNF(αj
1)) + . . .+ aj

nj Prob(CDNF(αj
nj )) ρj c j

ρj ∈ {≥, <}
aj
i ’s and c j ’s are rational numbers

CDNF(α) - the complete disjunctive normal form of α
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Prob(p → q) + Prob(p) ≥ 1.7 ∧ Prob(q) ≥ 0.6

Prob((p ∧ q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q))+
Prob((p ∧ q) ∨ (p ∧ ¬q)) ≥ 1.7
∧
Prob(p ∧ q) + (¬p ∧ q)) ≥ 0.6

The formula is satisfiable iff the same holds for the linear system:

µ(p ∧ q) + µ(p ∧ ¬q) + µ(¬p ∧ q) + µ(¬p ∧ ¬q) = 1

µ(p ∧ q) ≥ 0
µ(p ∧ ¬q) ≥ 0
µ(¬p ∧ q) ≥ 0
µ(¬p ∧ ¬q) ≥ 0

µ(p ∧ ¬q) + µ(¬p ∧ q) + µ(¬p ∧ ¬q) + 2µ(p ∧ q) ≥ 1.7
µ(p ∧ q) + µ(¬p ∧ q) ≥ 0.6.
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Genetic algorithms

general problem solving methods inspired by processes of natural
evolution

use populations of individuals (possible solutions for the problem)

define the corresponding evaluation functions assigning fitness values
to individuals

apply the genetic operators (selection, crossover and mutation) to
populations to improve the corresponding average fitness values from
each generation to subsequent
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InputData();
PopulationInit();
while ( not FinishedGA() ) {

for ( i = 0 ; i < Npop ; i + +) pi = ObjectiveFunction();
HeuristicImprovement();
ComputeFitnesses();
Selection();
Crossover();
Mutation();

}
OutputResults();
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Genetic algorithms for PSAT:

an individual is a description of a probabilistic model

individuals are of the length polynomial (! not exponential !) in the
size of the input formula

solve problems with 200 propositional letters (systems with 2200

variables, models with 2200 states

Z.Ognjanović,M.Rašković,Z.Marković (MI) Probability logics Nǐs, November 9-10 22 / 23



Genetic algorithms for PSAT:

an individual is a description of a probabilistic model

individuals are of the length polynomial (! not exponential !) in the
size of the input formula

solve problems with 200 propositional letters (systems with 2200

variables, models with 2200 states
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Extensions:

logics with richer languages:

conditional probability operators CP≥s(A,B)
a operator for qualitative probability A C B
first order probability logics
iterations of probabilistic operators

different ranges of probabilistic functions:

finite ranges {0, 1
n ,

2
n , . . . ,

n−1
n , 1}

infinitesimals: CP≈1(A,B), defaults,
partially ordered countable commutative monoids,
. . .

Overview:

http://cms.uns.ac.rs/deuks/uploads/Outcomes/Probability Logics
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Thank you for your attention.
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