
Networks of Evolutionary Picture Processors

Paolo Bottonia, Anna Labellaa, Victor Mitranab,c, Jose M.
Semperec

aDepartment of Computer Science, “Sapienza” University of Rome
Via Salaria 113, 00198 Rome, Italy

bFaculty of Mathematics, University of Bucharest
Str. Academiei 14, 70109 Bucharest, Romania

cDepartment of Information Systems and Computation
Technical University of Valencia,

Camino de Vera s/n. 46022 Valencia, Spain

Abstract

We extend the study of accepting networks of evolutionary processors to rect-
angular pictures by introducing networks of evolutionary picture processors.
Two ways of accepting pictures are considered: weak acceptance, when at
least one output node is nonempty, and strong acceptance, when all output
nodes are nonempty. Every language weakly accepted by a network can be
strongly accepted by another network. The closure properties of these devices
under some common operations on picture languages are briefly investigated.
We show that networks of evolutionary picture processors can weakly accept
the complement of any local language, as well as languages that are not rec-
ognizable. The problem of pattern matching in pictures is then considered
in the framework of networks of evolutionary picture processors. A partial
solution to this problem is given for the weak acceptance case and a similar
result is discussed for the strong acceptance. Some open problems are finally
discussed.

Key words: picture languages, networks of evolutionary processors,
two-dimensional pattern matching

Email addresses: bottoni@di.uniroma1.it (Paolo Bottoni),
labella@di.uniroma1.it (Anna Labella), mitrana@fmi.unibuc.ro (Victor
Mitrana), jsempere@dsic.upv.es (Jose M. Sempere)

Preprint submitted to Journal of Computer and System Sciences October 4, 2009

1. Introduction

Picture languages defined by different mechanisms have been studied ex-
tensively in the literature. Two-dimensional matrix and array models de-
scribing pictures that are rectangular arrays of symbols have been proposed
in [21, 22, 27, 24]. On the other hand, models defining pictures that are con-
nected arrays but not necessarily rectangular have been proposed as early as
70’s [18] and a hierarchy of these grammars was considered in [26]. Classes
of grammars for picture generation, again not necessarily rectangular, have
been proposed in [3, 16, 23]. A new model of recognizable picture languages,
extending to two dimensions the characterization of the one-dimensional rec-
ognizable languages in terms of alphabetic morphisms of local languages,
has been introduced in [7]. Similarly to the string case, characterizations of
recognizable picture series were proposed, see, e.g., [2, 13]. An early survey
on automata recognizing rectangular pictures languages is [9], a bit more
recent one considering different mechanisms defining picture languages, not
necessarily rectangular, is [18] and an even more recent and concise one is [6].
Rather unexpected connections between different types of picture languages
and logics were reported in [8, 14].

This work tries to carry over to rectangular pictures the investigation
started in [4] and [10] and continued in a series of papers; the reader may
consult the early survey [12]. In these papers a mechanism inspired from cell
biology was considered, namely networks of evolutionary processors, i.e. net-
works whose nodes are very simple processors able to perform just one type
of point mutation (insertion, deletion or substitution of a symbol). These
nodes are endowed with filters defined by some very simple context condi-
tions. In a more general view, each node processor acts on the local data
in accordance with some predefined rules. Local data is then transmitted
over the network following a given protocol. Only data which can pass a
filtering process can be communicated. This filtering process may require to
satisfy some conditions imposed by the sending processor, by the receiving
processor or by both of them. All the nodes simultaneously send their data
to and receive data from the nodes which they are connected to.

The approach proposed here is very different from the one considered in
[15] and continued in [5], where networks for generating 2D and 3D languages
are investigated. In this paper, we consider networks of evolutionary picture
processors acting on rectangular pictures as acceptors. Each node is either
a row/column substitution node or a row/column deletion node. The action

2

of each node on the data it contains is precisely defined. For instance, if a
node is a row substitution node, then it can substitute a letter by another
letter in either the topmost or the last or an arbitrary row. Moreover, if
there are more occurrences of the letter that is to be substituted in the row
on which the substitution rule acts, then each such occurrence is substituted
in different copies of that picture. An implicit assumption is that arbitrarily
many copies of every picture are available. A similar informal explanation
concerns the column substitution and deletion nodes, respectively.

Although this computational process is not exactly an evolutionary pro-
cess in the Darwinian sense, the rewriting operations performed in the nodes
might be interpreted as a 2D generalization of gene mutations in chromo-
somes and the filtering process viewed as a selection process. Recombination
is missing but it was asserted that evolutionary and functional relationships
between genes can be captured by taking only local mutations into con-
sideration [20]. We would like to stress from the very beginning that the
evolutionary processor we propose here is just a mathematical object and
the biological hints mentioned above are intended to explain in an informal
way how some biological phenomena are sources of inspiration for our model.

The paper is structured as follows: in the next section we present the
formal definitions of the concepts forming the computational model of net-
works of picture processors; then we discuss a few preliminary results useful
for the rest of the paper. We show that every language weakly accepted by
a network can be strongly accepted by another network and prove a few clo-
sure properties of these devices. We explain the composition of two or more
networks by two examples. The fourth section presents a brief comparison
of the computational power of accepting networks of evolutionary picture
processors with that of the models defining recognizable and local picture
languages. We show that these networks can weakly accept the complement
of any local language and languages that are not recognizable. Afterwards
we consider the problem of pattern matching in pictures and propose a par-
tial solution based on networks of evolutionary picture processors with weak
acceptance. The same strategy is then applied to networks of evolutionary
picture processors with strong acceptance. Finally, we briefly discuss some
open problems.

3

2. Basic Definitions

For basic terminology and notations concerning the theory of one-dimensi-
onal languages the reader is referred to [19]. The definitions and notations
concerning two-dimensional languages are taken from [6].

The set of natural numbers from 1 to n is denoted by [n]. The cardinality
of a finite set A is denoted by card(A). Let V be an alphabet, V ∗ the set
of one-dimensional strings over V and ε the empty string. A picture (or a
two-dimensional string) over the alphabet V is a two-dimensional array of
elements from V . We denote the set of all pictures over the alphabet V by
V ∗
∗ , while the empty picture will be still denoted by ε. A two-dimensional

language over V is a subset of V ∗
∗ . The minimal alphabet containing all

symbols appearing in a picture π is denoted by alph(π). Let π be a picture
in V ∗

∗ ; we denote the number of rows and the number of columns of π by π
and |π|, respectively. The pair (π, |π|) is called the size of the picture π. The
size of the empty picture ε is obviously (0, 0). The set of all pictures over V
of size (m,n), where m,n ≥ 1, is denoted by V n

m. The symbol placed at the
intersection of the ith row with the jth column of the picture π, is denoted by
π(i, j). The row picture of size (1, n) containing occurrences of the symbol a
only is denoted by an

1 . Similarly the column picture of size (m, 1) containing
occurrences of the symbol a only is denoted by a1

m.
We recall informally the row and column concatenation operations be-

tween pictures. For a formal definition the reader is referred to [9] or [6].
The row concatenation of two pictures π of size (m,n) and ρ of size (m′, n′)
is denoted by r and is defined only if n = n′. The picture πrρ is obtained
by adding the picture ρ after the last row of π. Analogously one defines the
column concatenation denoted by c©. We now define four new operations, in
some sense the inverse operations of the row and column concatenation. Let
π and ρ be two pictures of size (m,n) and (m′, n′), respectively. We define

- The column right-quotient of π with ρ: π/→ρ = θ iff π = θ c©ρ.

- The column left-quotient of π with ρ: π/←ρ = θ iff π = ρ c©θ.

- The row down-quotient of π with ρ to the right: π/↓ρ = θ iff π = θrρ.

- The column up-quotient of π with ρ: π/↑ρ = θ iff π = ρrθ.

Let V be an alphabet; a rule of the form a → b(X), with a, b ∈ V ∪ {ε}
and X ∈ {−, |} is called an evolutionary rule. For any rule a → b(X), X

4

indicates which component of a picture (row if X = − or column if X = |)
the rule is applied to. We say that a rule a → b(X) is a substitution rule
if both a and b are not ε, is a deletion rule if a 6= ε, b = ε, and is an
insertion rule if a = ε, b 6= ε. In this paper we shall ignore insertion rules
because we want to process every given picture in a space bounded by the
size of that picture. We denote by RSubV = {a → b(−) | a, b ∈ V } and
RDelV = {a → ε(−) | a ∈ V }. The sets CSubV and CDelV are defined
analogously.

Given a rule σ as above and a picture π ∈ V n
m, we define the following

actions of σ on π:
• If σ ≡ a → b(|) ∈ CSubV , then

σ←(π) =





{π′ ∈ V n
m | ∃i ∈ [m] (π(i, 1) = a & π′(i, 1) = b), π′(k, 1) = π(k, 1),

k ∈ [m] \ {i}, π′(j, l) = π(j, l),∀(j, l) ∈ [m]× ([n] \ {1})}

{π}, if the first column of π does not contain any occurrence
of the letter a.

σ→(π) =





{π′ ∈ V n
m | ∃i ∈ [m] (π(i, n) = a & π′(i, n) = b), π′(k, n) = π(k, n),

k ∈ [m] \ {i}, π′(j, l) = π(j, l),∀(j, l) ∈ [m]× [n− 1]}

{π}, if the last column of π does not contain any occurrence
of the letter a.

σ∗(π) =





{π′ ∈ V n
m | ∃(i, j) ∈ [m]× [n] such that π(i, j) = a and

π′(i, j) = b, π′(k, l) = π(k, l),∀(k, l) ∈ ([m]× [n]) \ {(i, j)}}

{π}, if no column of π contains any occurrence of the letter a.
Note that a rule as above is applied to all occurrences of the letter a either

in the first or in the last or in any column of π, respectively, in different copies
of the picture π. Analogously, we define:

• If σ ≡ a → b(−) ∈ RSubV , then

σ↑(π) =





{π′ ∈ V n
m | ∃i ∈ [n](π(1, i) = a & π′(1, i) = b), π′(1, k) = π(1, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ ([m] \ {1})× [n]}

{π}, if the first row of π does not contain any occurrence
of the letter a.

5

σ↓(π) =





{π′ ∈ V n
m | ∃i ∈ [n](π(m, i) = a & π′(m, i) = b), π′(m, k) = π(m, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ [m− 1]× [n]}

{π}, if the last row of π does not contain any occurrence
of the letter a.

σ∗(π) = ρ∗(π), where ρ ≡ a → b(|) ∈ CSubV .
• If σ ≡ a → ε(|) ∈ CDelV , then

σ←(π) =





π/←ρ, where ρ is the leftmost column of π, if the leftmost
column of π does contain at least one occurrence of the letter a

π, if the leftmost column of π does not contain any occurrence
of the letter a.

σ→(π) =





π/→ρ, where ρ is the rightmost column of π, if the rightmost
column of π does contain at least one occurrence of the letter a

π, if the rightmost column of π does not contain any occurrence
of the letter a.

σ∗(π) =





{π1 c©π2 | π = π1 c©ρ c©π2, for some π1, π2 ∈ V ∗
∗ and ρ is a

column of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.

In an analogous way we define:
• If σ ≡ a → ε(−) ∈ RDelV , then

σ↑(π) =





π/↑ρ, where ρ is the first row of π, if the first row
of π does contain at least one occurrence of the letter a

π, if the first row of π does not contain any occurrence
of the letter a.

σ↓(π) =





π/↓ρ, where ρ is the last row of π, if the last row
of π does contain at least one occurrence of the letter a

π, if the last row of π does not contain any occurrence
of the letter a.

6

σ∗(π) =





{π1rπ2 | π = π1rρrπ2, for some π1, π2 ∈ V ∗
∗ and ρ is a

row of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.

For every rule σ, action α ∈ {∗,←,→, ↑, ↓}, and L ⊆ V ∗
∗ , we define the

α-action of σ on L by σα(L) =
⋃
π∈L

σα(π). Given a finite set of rules M , we

define the α-action of M on the picture π and the language L by:

Mα(π) =
⋃

σ∈M

σα(π) and Mα(L) =
⋃
π∈L

Mα(π),

respectively. In what follows, we shall refer to the rewriting operations de-
fined above as evolutionary picture operations since they may be viewed as
the 2-dimensional linguistic formulations of local gene mutations. For two
disjoint subsets P and F of an alphabet V and a picture π over V , we define
the following two predicates which will define later two types of filters:

rcs(π; P, F) ≡ P ⊆ alph(π) ∧ F ∩ alph(π) = ∅
rcw(π; P, F) ≡ alph(π) ∩ P 6= ∅ ∧ F ∩ alph(π) = ∅.

The construction of these predicates is based on context conditions defined
by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, both conditions requires that no forbidding sym-
bol is present in π; furthermore the first condition requires all permitting
symbols to appear in π, while the second one requires that at least one per-
mitting symbol appears in π. It is plain to see that the first condition is
stronger than the second one.

For every picture language L ⊆ V ∗
∗ and β ∈ {s, w}, we define:

rcβ(L, P, F) = {π ∈ L | rcβ(π; P, F) = true}.

An evolutionary picture processor over V is a 5-tuple (M,PI, FI, PO, FO),
where:

– Either (M ⊆ CSubV) or (M ⊆ RSubV) or (M ⊆ CDelV) or (M ⊆
RDelV). The set M represents the set of evolutionary rules of the processor.
As one can see, a processor is “specialized” into one type of evolutionary
operation, only.

7

– PI, FI ⊆ V are the input sets of permitting/forbidding symbols (con-
texts) of the processor, while PO, FO ⊆ V are the output sets of permit-
ting/forbidding symbols of the processor (with PI ∩FI = ∅ and PO∩FO =
∅).

We denote the set of evolutionary picture processors over V by EPPV .
As we stated in the Introduction, the evolutionary processor described here
is just a mathematical concept similar to that of an evolutionary algorithm,
both being inspired from the Darwinian evolution.

An accepting network of evolutionary picture processors (ANEPP for
short) is a 8-tuple Γ = (V, U,G, N, α, β, xI , Out), where:

• V and U are the input and network alphabet, respectively, V ⊆ U .

• G = (XG, EG) is an undirected graph without loops with the set of
vertices XG and the set of edges EG. G is called the underlying graph
of the network.

• N : XG −→ EPPV is a mapping which associates with each node
x ∈ XG the evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).

• α : XG −→ {∗,←,→, ↑, ↓}; α(x) gives the action mode of the rules of
node x on the pictures existing in that node.

• β : XG −→ {s, w} defines the type of the input/output filters of a node.
More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = rcβ(x)(·; PIx, F Ix),

output filter: τx(·) = rcβ(x)(·; POx, FOx).

That is, ρx(π) (resp. τx(π)) indicates whether or not the picture π can
pass the input (resp. output) filter of x. More generally, ρx(L) (resp.
τx(L)) is the set of pictures of L that can pass the input (resp. output)
filter of x.

• xI ∈ XG is the input node and Out ⊂ XG is the set of output nodes of
Γ.

We say that card(XG) is the size of Γ. A configuration of an ANEPP Γ as
above is a mapping C : XG −→ 2U∗∗ which associates a finite set of pictures
with every node of the graph. A configuration may be understood as the sets

8

of pictures which are present in any node at a given moment. Given a picture
π ∈ V ∗

∗ , the initial configuration of Γ on π is defined by C
(π)
0 (xI) = {π} and

C
(π)
0 (x) = ∅ for all x ∈ XG − {xI}.

A configuration can change via either an evolutionary step or a communi-
cation step. When changing via an evolutionary step, each component C(x)
of the configuration C is changed in accordance with the set of evolutionary
rules Mx associated with the node x and the way of applying these rules α(x).
Formally, we say that the configuration C ′ is obtained in one evolutionary
step from the configuration C, written as C =⇒ C ′, iff

C ′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing via a communication step, each node processor x ∈ XG

sends one copy of each picture it has, which is able to pass the output filter
of x, to all the node processors connected to x and receives all the pictures
sent by any node processor connected with x provided that they can pass its
input filter.

Formally, we say that the configuration C ′ is obtained in one communi-
cation step from configuration C, written as C ` C ′, iff

C ′(x) = (C(x)− τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Note that pictures that cannot pass the output filter of a node remain in
that node and can be further modified in the subsequent evolutionary steps,
while pictures that can pass the output filter of a node are expelled. Further,
all the expelled pictures that cannot pass the input filter of any node are
lost.

Let Γ be an ANEPP, the computation of Γ on an input picture π ∈ V ∗
∗

is a sequence of configurations C
(π)
0 , C

(π)
1 , C

(π)
2 , . . ., where C

(π)
0 is the initial

configuration of Γ on π, C
(π)
2i =⇒ C

(π)
2i+1 and C

(π)
2i+1 ` C

(π)
2i+2, ∀i ≥ 0. Note that

configurations are changed by alternative steps. By the previous definitions,
each configuration C

(π)
i is uniquely determined by C

(π)
i−1. A computation halts,

and is said to be weak (strong) halting, if one of the following two conditions
holds:

(i) There exists a configuration in which the set of pictures existing in
at least one output node (all output nodes) is non-empty. In this case, the
computation is said to be a weak (strong) accepting computation.

9

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.

The picture language weakly (strongly) accepted by Γ is

Lwa(sa)(Γ) = {π ∈ V ∗
∗ | the computation of Γ on π is a weak (strong)

accepting one}.

In network theory, some types of underlying graphs are common like
rings, stars, grids, etc. Networks of evolutionary strings processors, seen as
language generating or accepting devices, having underlying graphs of these
special forms have been considered in several papers, see, e.g., [12] for an early
survey. We focus here on complete ANEPPs i.e., ANEPPs having a complete
underlying graph, so that we can replace the graph G in the definition of an
ANEPP by the set of its nodes.

3. Preliminary Results

The following two notions will be very useful in the sequel. If h is a one-to-
one mapping from U to W and Γ = (V, U, χ,N, α, β, xI , Out) is an ANEPP,
then we denote by Γh the ANEPP Γh = (h(V), h(U), χ, h(N), α, β, xI , Out),
where by h(N) we mean h(N)(x) = (h(Mx), h(PIx), h(FIx), h(POx), h(FOx))
for every x ∈ χ, provided that N(x) = (Mx, P Ix, F Ix, POx, FOx). Further,
h(a → b(X)) = h(a) → h(b)(X) for any evolutionary rule a → b(X). Now,
given two ANEPPs Γi = (Vi, Ui, χi, Ni, αi, βi, x

i
I , Outi), i = 1, 2, χ1 ∩ χ2 = ∅,

we denote by Γ1 t Γ2 = (V1, U1 ∪ U2, χ1 ∪ χ2, N, α, β, x1
I , Out2) the composi-

tion of the two ANEPPs Γ1 and Γ2, where ◦ |χi
= ◦i for all ◦ ∈ {N,α, β} and

i = 1, 2.
We first establish a useful relationship between the two classes Lwa(ANEPP)
and Lsa(ANEPP). As it was expected, we have

Theorem 1. Lwa(ANEPP) ⊆ Lsa(ANEPP).

Proof. Actually, we prove a bit more general result, namely that for ev-
ery ANEPP Γ there exists an ANEPP Γ′ with one output node only and
Lwa(Γ) = Lwa(Γ

′) = Lsa(Γ
′). W.l.o.g. we assume that the set of rules in ev-

ery output node of Γ is empty and that all its filter types are strong. Indeed,
if the filter type of one node is a weak one with P its input set of permitting
symbols, then this node can be replaced by 2card(P) − 1 output nodes, each

10

of them having a strong filter type where the input sets of permitting and
forbidding symbols are a nonempty subset of P and the empty set, respec-
tively. Further on, the output set of permitting and forbidding symbols of
every such node is {Z} and the empty set, respectively, where Z is a new
symbol. Now, in order to get Γ′, we add one more node to Γ, which is the
unique output node of Γ′. This node can receive only pictures containing the
new symbol Z. We now associate with each output node of Γ a set of sub-
stitution rules formed by one substitution only, namely X → Z(−), where
X is an arbitrary symbol from the input set of permitting symbols of that
node applied in the ∗ mode.

We now present a preliminary result concerning the closure properties of
the classes Lwa(ANEPP) and Lsa(ANEPP).

Theorem 2. 1. The class Lwa(ANEPP) is closed under rotation, boolean
union, projection, inverse projection.
2. The class Lsa(ANEPP) is closed under rotation, boolean intersection,
projection, inverse projection.

Proof. 1. The closure under rotation is immediate. For union, we give an
informal proof that can be easily formalized by the reader. Let Γ1 and Γ2

be two ANEPPs; we construct a new ANEPP Γ that contains three sub-
networks. In the input node of the first subnetwork, an arbitrary symbol
of the input picture is substituted by either its primed copy or its barred
copy. All pictures containing a primed symbol are received by a specific
node while those containing a barred symbol are received by another specific
node. All symbols of the pictures arrived in these two nodes are replaced by
their primed and barred copies, respectively. When this process is finished,
each of the two nodes contains only one picture. The picture containing
primed symbols only is given as an input picture to the subnetwork formed
from Γ1 suitably modified. The other picture is processed analogously by the
subnetwork formed from Γ2 suitably modified. The set of output nodes of Γ
is the union of the sets of output nodes of the modified Γ1 and Γ2. Clearly,
Lwa(Γ) = Lwa(Γ1) ∪ Lwa(Γ2).

If h : V −→ U is a projection and Γ is an ANEPP with input alphabet V ,
then let Γ′ be the ANEPP with input alphabet U formed by two subnetworks
as follows. In the input node of the first subnetwork, each symbol b of the
input picture is substituted by a symbol a′ such that a′ is a copy of a ∈ V
that does not appear in V ∪ U and h(a) = b. When all symbols of the input

11

picture are substituted, all the obtained pictures will be sent to the input
node of the subnetwork formed from Γ suitably modified. It is plain to see
that h(Lwa(Γ)) = Lwa(Γ

′). The construction for the closure under inverse
projection is pretty similar and left to the reader.

2. The closure under intersection, projection and inverse projection fol-
lows similarly to the previous case. Note the fundamental role played by the
strong acceptance in the case of intersection.

We continue the series of preliminary results with one simple example
which lays the basis for further results.

Example 1. Let L be the set of all pictures π ∈ V ∗
2 with two identical rows

over the alphabet V . The language L can be formally described as

L = {π ∈ V m
2 | π(1, i) = π(2, i), i ∈ [m], m ≥ 1}.

L can be weakly (strongly) accepted by the following complete ANEPP with
3·card(V)+3 nodes, namely xI , xa, x′a, x′′a, a ∈ V , xdel, the working alphabet
U = V ∪ {Xa, Ya | a ∈ V } ∪ {X, Y }, and one output node only, namely xO:

xI :





M = ∅,
P I = V, FI = U \ V,
PO = V, FO = ∅,
α =↑, β = w,

xa :





M = {a → Xa(−)},
P I = V, FI = U \ V,
PO = {Xa}, FO = ∅,
α =↑, β = w,

xdel :





M = {Xa → ε(|) | a ∈ V },
P I = {Ya | a ∈ V }, F I = ∅,
PO = V, FO = U \ V,
α =←, β = w,

x′a :





M = {a → Ya(−)},
P I = {Xa}, F I = {Yb | b ∈ V },
PO = {Ya}, FO = ∅,
α =↓, β = s,

xO :





M = ∅,
P I = {X, Y },
F I = U \ {X,Y },
PO = ∅, FO = U,
α = ∗, β = s.

x′′a :





M = {Xa → X(|), Ya → Y (|)},
P I = {Xa, Ya},
F I = U \ {Xa, Ya},
PO = {X, Y }, FO = ∅,
α =→, β = s,

Let us follow a computation of this network on an input picture π. In the
input node no action is done on this picture in the first computation step,
but a copy of this picture is sent simultaneously to all nodes xa, a ∈ V in the
next communication step. We now follow what happens with this picture in
the node xa for some a. Here an occurrence of a of the first row is replaced
by Xa and all pictures are sent out. They can be received by x′a only, where

12

an occurrence of a of the last row is replaced by Ya. All pictures going out
from all nodes x′a, a ∈ V , arrive in xdel. They all remain here forever except
for those having the leftmost column starting with Xa and ending with Ya,
for some a ∈ V . They are sent out after their leftmost column is removed.
A copy of each of them will enter every node xa, a ∈ V , and the process
resumes. The computation either continues until a column picture starting
with Xa and ending with Ya, for some a ∈ V is obtained in x′a, or halts
without accepting the input picture. If such a column picture is obtained in
x′a, for some a ∈ V , then it enters x′′a where Xa and Ya are replaced by X
and Y , respectively. The new column picture is sent out by x′′a but it is lost
unless its length is two, in which case it enters xO and the input picture is
accepted. By these explanations, it follows that every input picture with a
different number of rows than two cannot be accepted. 2

Clearly, the language of all pictures of size (n, 2), n ≥ 1, over a given
alphabet V , where the two columns are identical can also be accepted by
an ANEPP. The network from Example 1 can be extended to decide the
language of all pictures (of any size) having two identical rows. The role of
this example is to show how to ANEPPs can be combined in order to form
a new ANEPP.

Example 2. Let L be the set of all pictures π ∈ V ∗
∗ with two identical rows

over the alphabet V . The language L can be formally described as

L = {π ∈ V m
n | ∃i, j ∈ N, 1 ≤ i 6= j ≤ n (π(i, k) = π(j, k)), k ∈ [m], n,m ≥ 1}.

In what follows we assume that the same alphabet V is used in Examples
1 and 2. First, we construct the ANEPP Γ1 = (V, U1, χ1, N1, α1, β1, yI , {ȳ′a |
a ∈ V }) of size 4card(V) + 2 with the working alphabet U1 = V ∪ {a′, a′′, ā |
a ∈ V }, and the nodes defined by:

yI :





M = {a → a′(|) | a ∈ V },
P I = ∅, F I = U1,
PO = {a′ | a ∈ V }, FO = ∅,
α1 =←, β1 = w,

y′ :





M = {a → a′′(|) | a ∈ V },
P I = {a′ | a ∈ V },
F I = U1 \ (V ∪ {a′ | a ∈ V }),
PO = {a′′ | a ∈ V }, FO = ∅,
α1 =←, β1 = w,

ya(a ∈ V) :





M = {b → ε(−) | b ∈ V },
P I = {a′, a′′},
F I = U1 \ (V ∪ {a′, a′′}),
PO = ∅, FO = ∅,
α1 = ∗, β1 = s,

13

y′a(a ∈ V) :





M = {b → ε(−) | b ∈ V },
P I = {a′, a′′},
F I = U1 \ (V ∪ {a′, a′′}),
PO = ∅, FO = ∅,
α1 = ∗, β1 = s,

ȳa (a ∈ V):





M = {a′ → ā(−)} ∪ {b → b̄(−) | b ∈ V },
P I = {a′, a′′}, F I = U1 \ (V ∪ {a′, a′′}),
PO = ∅, FO = {a′},
α1 =↑, β1 = s,

ȳ′a (a ∈ V):





M = {a′′ → ā(−)} ∪ {b → b̄(−) | b ∈ V },
P I = {ā, a′′}, F I = U1 \ (V ∪ {ā, a′′}),
PO = ∅, FO = U1 \ {b̄ | b ∈ V },
α1 =↓, β1 = s,

The informal idea is the following. In the nodes yI and y′ two symbols,
say a and b (possibly the same) on the leftmost column are replaced by a′

and b′′, respectively. If a 6= b, then no other pictures can be obtained. If
a = b, then by means of the nodes ya and y′a, some rows are deleted from
the pictures. Only those pictures in which all rows except the rows starting
with a′ and a′′ are deleted can still be active for the rest of the computation.
Furthermore, these pictures must have the first row starting with a′ and the
second one starting with a′′. We follow what happens with these pictures
as soon as they arrive in ȳa, for some a ∈ V . Here some symbols from the
first row are transformed into their barred copies, including a′. Then, some
symbols on the second row are transformed into their barred copies in ȳ′a.
A picture cannot go out from ȳ′a, for any a ∈ V , unless all its symbols were
substituted by barred copies. Therefore, for a picture to go out from ȳ′a, it
must have only barred symbols on its first row when leaving ȳa.

We now consider the ANEPP Γ = (V, U, χ, N, α, β, xI , xO) from Example
1 and the one-to-one mapping h : U −→ {ā | a ∈ V } ∪ (U \ V) defined by
h(a) = ā, a ∈ V , and h(b) = b, b ∈ U \ V . Let Γ2 the ANEPP obtained from
Γh by replacing h(U) with U1 ∪ U wherever h(U) appears in the definition
of parameters of Γh. We claim that Γ1 t Γ2 weakly accepts L. Indeed, the
subnetwork Γ2 can start to work when it receives pictures having barred
symbols only. These pictures can be obtained from the nodes ȳ′a, a ∈ V . By
the above explanations, they are pictures with only two rows that are barred
copies of two rows randomly selected from the input picture. 2

In what follows, instead of giving all the details of how two networks are
merged, as in Example 2, we simply say that the pictures processed by the

14

network Γ1 are given as inputs to the network Γ2 suitably modified.

4. Comparison With Other Devices

In this section we compare the classes Lwa(ANEPP) and Lsa(ANEPP)
of picture languages weakly and strongly accepted by ANEPPs, respectively,
with L(LOC) and L(REC) denoting the classes of local and recognizable
picture languages, respectively [7].

Theorem 3. Lwa(ANEPP) \ L(REC) 6= ∅.
Proof. We first claim that the following language

L = {π ∈ V m
2n | n,m ≥ 1, (π(n, i) = π(n + 1, i)),∀i ∈ [m]}

is not recognizable, provided that card(V) ≥ 2. Clearly, L consists of all
pictures that can be written in the form π1rπ2, where π1, π2 are pictures of
the same size and the last row of π1 is equal to the first row of π2. Assume
that L is recognizable and let L = h(L′), where h is a projection from some
alphabet U to V and L′ ⊆ U∗

∗ is a local language. For two positive integers
n,m, let L(n,m) be the subset of L formed by all pictures that can be written
in the form π1rπ2 with π1, π2 as above but satisfying also the following two
conditions:

- both π1 and π2 are of size (n,m);
- neither π1 nor π2 contains two consecutive identical rows.

Therefore, there exists a subset L′(n, m) of L′ such that L(n,m) =
h(L′(n,m)) for all n,m. Let m be fixed; as every set L(n,m) is not empty
for all values of n, it follows that all sets L′(n,m) are nonempty as well.

Therefore, there are two pictures ρ ∈ L′(n1,m) and τ ∈ L′(n2,m), with
n1 6= n2 such that the stripe rectangle of size (2,m) consisting of the n1-th and
(n1+1)-th rows in ρ equals the stripe rectangle of size (2,m) consisting of the
n2-th and (n2 +1)-th rows in τ . Consequently, both pictures obtained from ρ
and τ by interchanging their first halves with each other are in L′. However,
the projection by h of any of these pictures is not in L, a contradiction.

We now prove that the language

L = {π ∈ V m
2n | n, m ≥ 1, π(n, i) = π(n + 1, i),∀i ∈ [m]}

is in Lwa(ANEPP) for any alphabet V . We give only the description of
the network processing the input pictures until they are sent to the input

15

node of the network from Example 1 suitably modified. The six nodes of this
network are defined as follows:

xI :





M = {a → X(−) | a ∈ V } ∪ {a → a′(−) | a ∈ V },
P I = ∅, F I = {X,Y } ∪ {a′ | a ∈ V },
PO = {X} ∪ {a′ | a ∈ V }, FO = ∅,
α =↑, β = w,

x1 :





M = {a → Y (−) | a ∈ V },
P I = {X}, F I = {Y } ∪ {a′ | a ∈ V },
PO = {Y }, FO = ∅,
α =↓, β = w,

x2 :





M = {X → ε(−)},
P I = {X,Y }, F I = {a′ | a ∈ V },
PO = {Y }, FO = {X},
α =↑, β = s,

x3 :





M = {Y → ε(−)},
P I = {Y }, F I = {X} ∪ {a′ | a ∈ V },
PO = ∅, FO = {X, Y },
α =↓, β = s,

x4 :





M = {a → a′(−) | a ∈ V },
P I = {a′ | a ∈ V }, F I = {X,Y },
PO = {a′ | a ∈ V }, FO = ∅,
α =↑, β = w.

x5 :





M = {a → a′(−) | a ∈ V },
P I = {a′ | a ∈ V }, F I = {X,Y },
PO = {a′ | a ∈ V }, FO = ∅,
α =↓, β = w.

The working mode of this network is rather simple. In the input node the
first row of the picture is marked either for deletion (if a symbol of the first
row was replaced by X) or for the checking phase. If the first row was marked
for deletion, the picture goes to the node x1 where the last row is marked for
deletion. Then these two rows are deleted in the nodes x2 and x3, and the
process resumes in the input node xI . Let us now see what happens with a
picture marked for the checking phase in the input node. This picture enters
nodes x4 and x5 which exchange with each other this picture until all symbols

16

on the first and last row are replaced by the primed copies of the original
symbols. Now, this picture is sent to the input node of the subnetwork from
Example 1 suitably modified. As this node cannot accept pictures containing
other symbols than primed ones, it follows that the pictures able to enter this
node have exactly two rows. This concludes the proof.

We do not know whether the inclusion L(REC) ⊂ Lwa(ANEPP) holds,
however a large part of L(REC) is included in Lwa(ANEPP) as the next
result states. We recall that the complement of any local language is recog-
nizable [7].

Theorem 4. The complement of every local language can be weakly accepted
by an ANEPP.

Proof. We first give an informal argument such that the formal proof can be
understood easily. The argument starts with the observation that one can
construct a network that weakly accepts only a fixed picture of size (2, 2).
Now, if L is a local language over the alphabet V defined by the set F of
(2, 2)-tiles, then we consider the set F c of all (2, 2)-tiles over V that do not
belong to F . The rough idea of the network weakly accepting the complement
of L is the following one. First, one constructs a set of completely disjoint
networks each one accepting exactly one picture from F c. Then another
network cuts an arbitrary (2, 2)-tile from the input picture and sends it to
all these networks suitably modified.

We now give the formal proof. Assume that F c has the tiles t1, t2, . . . tn for
some n ≥ 1. We first define a network Γi that accepts exactly the singleton
picture language {ti} for some 1 ≤ i ≤ n; for sake of simplicity we assume

that ti =
a b
c d

. The nodes of this network are described below; xI and xO

are the input and output node, respectively.

17

xI :





M = {a → ai(|)},
P I = {a, b, c, d},
F I = {ai, bi, ci, di},
PO = {ai}, FO = ∅,
α =←, β = w,

x1 :





M = {c → ci(−)},
P I = {ai}, F I = {bi, ci, di},
PO = {ci}, FO = ∅,
α =↓, β = s,

x2 :





M = {b → bi(−)},
P I = {ai, ci}, F I = {bi, di},
PO = {bi}, FO = ∅,
α =↑, β = s,

x3 :





M = {d → di(|)},
P I = {ai, bi, ci}, F I = {di},
PO = {di}, FO = ∅,
α =→, β = s,

x4 :





M = {ai → ε(|)},
P I = {ai, bi, ci, di}, F I = V,
PO = {bi, di}, FO = {ai, ci},
α =←, β = s.

xO :





M = ∅,
P I = {bi, di}, F I = V,
PO = {bi, di}, FO = ∅,
α = ∗, β = s,

One can rather easily see that only pictures of size (2, 2) might be even-
tually accepted. We modify the filters of each network Γi, 1 ≤ i ≤ n, such
that as soon as a picture enters a node of some network Γi, it is processed
only in Γi until the computation halts. The network weakly accepting the
complement of L contains all networks Γi, 1 ≤ i ≤ n, modified as above, as
subnetworks and has the set of output nodes formed by the output nodes of
all Γi, 1 ≤ i ≤ n. It has four further nodes, two for deleting rows and two for
deleting columns, in the aim of preparing input pictures for the subnetworks
Γi, 1 ≤ i ≤ n.

5. Solving Picture Matching With ANEPPs

As one can see in the proof of the previous theorem, it is possible to
construct an ANEPP that weakly accepts the singleton language formed by
a given picture of size (2, 2). A natural problem is to find a pattern (a
given picture) in a given picture. This problem is widely known as the two-
dimensional pattern matching problem. It is largely motivated by different
aspects in low-level image processing [17]. The more general problem of
picture matching (it is not obligatory for the picture to be a two-dimensional
array) is widely known in Pattern Recognition field and is connected with
Image Analysis and Artificial Vision [11, 28].

For the rest of this paper we consider only ANEPPs that halt on ev-
ery input. The previous theorem shows that the two-dimensional pattern

18

matching problem can be solved by ANEPPs with weak acceptance (or the
problem is weakly decided by ANEPP) provided that the pattern is of size
(2, 2). Can this result be extended to patterns of arbitrary size? We show
that it can be extended to patterns of size (i, n) and (n, i) for any 1 ≤ i ≤ 3
and n ≥ 1. However, the general problem of pattern matching in a given
picture remains open. In order to prove that the pattern matching in a pic-
ture with patterns of size (i, n) (or (n, i)) for all 1 ≤ i ≤ 3 and n ≥ 1 can
be weakly decided by ANEPPs, it suffices to construct a network able to
weakly accept the singleton language formed by a given picture of size (i, n)
(or (n, i)) for all 1 ≤ i ≤ 3 and n ≥ 1. Indeed, if such a network, say Γ, can
be constructed, then given an arbitrary picture one can construct a network
that extract all its subpictures which are given as inputs to the subnetwork
Γ suitably modified. If at least one of these subpictures matches the pattern,
then the input picture is accepted.

Theorem 5. Let π be a picture of size (i, n) for some 1 ≤ i ≤ 3 and n ≥ 1.
The language {π} can be weakly accepted by an ANEPP.

Proof. Actually, we only prove the most difficult case, namely i = 3, the
proofs of the other cases that can be easily deduced from this one are left to
the reader.

Let V be the alphabet of π; the nodes of this network are described
below, where xI and xO are the input and output node, respectively. Note
that U = V ∪ {a(i), a(i), a(i) | a ∈ V, 1 ≤ i ≤ n}.

xI :





M = {π(1, 1) → π(1, 1)(1)(−)},
P I = V, FI = U \ V,
PO = {π(1, 1)(1)}, FO = ∅,
α =↑, β = w,

x(i) :





M = {π(1, i) → π(1, i)(i)(−)},
P I = {π(1, i− 1)(i−1)}, F I = U \ (V ∪ {π(1, i− 1)(i−1)}),
PO = {π(1, i)(i)}, FO = ∅,
α =↑, β = s, 2 ≤ i ≤ n

x(i) :





M = {π(3, i) → π(3, i)(i)(−)},
P I = {π(1, i)(i), π(1, i + 1)(i+1)},
F I = U \ (V ∪ {π(1, i)(i), π(1, i + 1)(i+1)}),
PO = {π(3, i)(i)}, FO = ∅,
α =↓, β = s, 1 ≤ i ≤ n− 1

19

x(i) :





M = {π(2, i) → π(2, i)(i)(|)},
P I = {π(1, i)(i), π(3, i)(i)}, F I = ∅,
PO = {π(2, i)(i)}, FO = ∅,
α =←, β = s, 1 ≤ i ≤ n

x
(i)
del :





M = {π(1, i)(i) → ε(|)},
P I = {π(2, i)(i)}, F I = ∅,
PO = ∅, FO = {a(i), a(i), a(i) | a ∈ V },
α =←, β = s, 1 ≤ i ≤ n− 1

x(n) :





M = {π(3, n) → π(3, n)(n)(−)},
P I = {π(1, n)(n)}, F I = U \ (V ∪ {π(1, n)(n)}),
PO = {π(3, n)(n)}, FO = ∅,
α =↓, β = s,

xO :





M = ∅,
P I = {π(1, n)(n), π(2, n)(n), π(3, n)(n)},
F I = U \ {π(1, n)(n), π(2, n)(n), π(3, n)(n)},
PO = ∅, FO = ∅,
α = ∗, β = s,

We analyze the computation of this network on an input picture µ of size
(k, m) for some k,m ≥ 1. We first consider the case k = 3 and m = n.
In xI an occurrence of π(1, 1) on the first row of µ is replaced by π(1, 1)(1)

and all pictures are sent out. These pictures can be received only by either
x(2), provided that n ≥ 2, or x(n), provided that n = 1. We assume that
n ≥ 2 and continue the computation in x(2). Here an occurrence of π(1, 2)
on the first row of all pictures is replaced by π(1, 2)(2). All pictures having
replaced an occurrence of π(1, 2) by π(1, 2)(2) can leave x(2) and enter x(1)

where an occurrence of π(3, 1) on the last row is replaced by π(3, 1)(1). Now
all pictures arrive in x(1) where an occurrence of π(2, 1) on the leftmost
column is replaced by π(2, 1)(1). Note that if a picture does not have an
occurrence of the symbol that is to be replaced in any of the nodes x(2), x(1),
and x(1), then it remains forever in that node.

Pictures going out from x(1) can enter x
(1)
del only, where the leftmost col-

umn is deleted provided that π(1, 1)(1) is situated on that column. The second
condition to continue the computation is that π(3, 1)(1) is also situated on

the column which is to be deleted in x
(1)
del. Therefore, the first column of µ

20

must be

π(1, 1)
.
π(2, 1)
.
π(3, 1)

. Now the process described above resumes for all pictures

going out from x
(1)
del, as all these pictures contain π(1, 2)(2) on their first row.

Inductively, for every 1 ≤ i ≤ n−2 every picture that has just gone out from
x

(i)
del must contain π(1, i + 1)(i+1) on its first row. Further on, it must follow

the following itinerary through the network: x(i+2), x(i+1), x(i + 1), x
(i+1)
del .

We now analyze the case when the symbol on the first row of a picture
going out from x

(n−1)
del is π(1, n)(n). This picture enters x(n) only, where an

occurrence of π(3, n) is replaced by π(3, n)(n) and then enters x(n) where
an occurrence of π(2, n) is replaced by π(2, n)(n). Now, if the picture is
π(1, n)(n)

π(2, n)(n)
π(3, n)(n)

, then it enters xO, otherwise it is lost.

By these explanations we infer the followings:

• If µ is of size (3, n), then it is accepted if and only if µ = π.

• If m < n, then the computation on µ will be eventually blocked after
at most m− 1 column deletions.

• If m > n, then the computation on µ will be eventually blocked after
at most n− 1 column deletions.

• If k < 3, then the computation on µ is blocked after the first column
deletion.

• If k > 3, then the computation on µ will be eventually blocked after at
most n− 1 column deletions.

In conclusion, the network accepts only one picture, namely π.

This result, together with the fact that the class Lwa(ANEPP) is closed
under boolean union (see Theorem 2), allows the following statement.

Theorem 6. Given a finite set F of patterns of size (i, n) and (n, i) for all
1 ≤ i ≤ 3 and n ≥ 1, the pattern matching problem with patterns from F can
be weakly decided by ANEPPs.

21

Various algorithms exist for the exact two-dimensional matching problem.
The fastest algorithms for finding a rectangular picture pattern in a given
picture of size (n,m) run in O(n×m) time, see, e.g., [1, 29]. It is rather easy
to note that an ANEPP which weakly decides whether a pattern of size (i, p),
1 ≤ i ≤ 3, appears in a given picture of size (n,m) does this in O(n + m)
computational (evolutionary and communication) steps. On the other hand,
the space complexity of the algorithm proposed in [29] is O(n×m), while the
number of pictures moving through the network is pretty large. We recall
that some biological phenomena are sources of inspiration for our model. In
this context, it is considered to be biologically feasible to have sufficiently
many identical copies of a molecule. By techniques of genetic engineering, in
a polynomial number of lab operations one can get an exponential number
of identical molecules.

As we have seen, the general problem of weakly deciding whether a given
pattern appears in a picture remained open. Could the problem be strongly
decided? Unfortunately, we do not have a complete answer for this case
either. However, similarly to the previous case we can state:

Theorem 7. Let π be a picture of size (n,m) for some n, m ≥ 1. The
language {π} can be strongly accepted by an ANEPP.

Proof. By Theorem 5, there exists an ANEPP Γ that weakly accepts exactly
{µ} for a given picture µ of size (1,m). Moreover, Γ has one output node
only. Let Γi, 1 ≤ i ≤ n, be the ANEPP with one output node which weakly
accepts the language {πi}, where πi is the row picture formed by the ith row
of π.

The idea of the proof is to extract all rows πi, for 1 ≤ i ≤ n, from π and
give them as inputs to the corresponding subnetworks Γi suitably modified.
All these subnetworks work with mutually disjoint alphabets. To this aim, we
need to design a subnetwork that extracts the picture πi, for some 1 ≤ i ≤ n,
and transforms it such that only Γi suitably modified can compute on it.

The input for all the subnetworks extracting pictures πi is provided by

another subnetwork that transforms the first column of π from

a1

. . .
a2

. . .
an

into

22

a1(σ(1))
.
a2(σ(2))
.
an(σ(n))

for some permutation σ : {1, 2, . . . , n} −→ {1, 2, . . . , n}. Note

that this subnetwork cannot provide inputs for any Γi suitably modified, if
the input picture π has less than n rows.

The subnetwork that extracts and prepares the input for Γi suitably mod-
ified is defined below. As one can easily see, only the input picture with
exactly n rows and σ being the identical permutation will eventually reach
the output node and then enter the input node of Γi. The input node of this
network is denoted xI while xO denotes the output node. Here U denotes
the alphabet

U = V ∪ {a(i), a(r)(i), a(r) | a ∈ V, 1 ≤ i ≤ n, 1 ≤ r ≤ n}.

xI :





M = {a(r) → a(r)(i)(|) | a ∈ V, 1 ≤ r ≤ n},
P I = {a(n) | a ∈ V }, F I = U \ (V ∪ {a(t) | a ∈ V, 1 ≤ t ≤ n}),
PO = U,FO = {a(t) | a ∈ V, 1 ≤ t ≤ n},
α =←, β = w,

xj :





M = {π(j, 1)(j)(i) → ε(−)},
P I = {π(j, 1)(j)(i), π(j + 1, 1)(j + 1)(i), . . . , π(n, 1)(n)(i)},
F I = U \ (V ∪ PI),
PO = {π(j + 1, 1)(j + 1)(i), . . . , π(n, 1)(n)(i)},
FO = U \ (V ∪ PO),
α =↑, β = s, 1 ≤ j ≤ i− 1

xk :





M = {π(k, 1)(k)(i) → ε(−)},
P I = {π(i, 1)(i)(i), π(i + 1, 1)(i + 1)(i), . . . , π(k, 1)(k)(i)},
F I = U \ (V ∪ PI),
PO = {π(i, 1)(i)(i), π(i + 1, 1)(i + 1)(i), . . . , π(k − 1, 1)(k − 1)(i)},
FO = U \ (V ∪ PO),
α =↓, β = s, i + 1 ≤ k ≤ n

xO :





M = {π(i, 1)(i)(i) → π(i, 1)(i)(|)} ∪ {a → a(i)(|) | a ∈ V },
P I = {π(i, 1)(i)(i)}, F I = U \ (V ∪ PI),
PO = ∅, FO = U \ {a(i) | a ∈ V },
α = ∗, β = s,

23

Indeed, this subnetwork extracts exactly the subpicture formed by the ith

row of the input picture and changes every symbol a of this row picture into
a(i). This row picture is ready now to be computed by Γi suitably modified.
The set of output nodes of the whole network is formed by the output node
of each Γi, 1 ≤ i ≤ n, suitably modified.

Unfortunately, this result cannot be further extended to a result similar to
Theorem 6 by an argument analogous to that used in that theorem. Indeed,
an analogous argument might lead to the fact that two subnetworks, say
Γi and Γj, have their output nodes nonempty by computations on two row
pictures that do not come from the same picture.

6. Further Work

We finish this work with a very short discussion on some problems left
open here.

1. The first natural problem regards the equality of the classes Lwa(ANEPP)
and Lsa(ANEPP). Another attractive problem, in our view, concerns
the relationships between these two classes and the classes L(LOC)
and L(REC).

2. Can the pattern matching problem with arbitrary pattern be weakly
or strongly decided by ANEPPs?

3. It is rather plain to see that the membership problem is decidable for
both classes Lwa(ANEPP) and Lsa(ANEPP). What other problems
are also decidable?

4. Another important direction of research concerns the closure proper-
ties of the two classes Lwa(ANEPP) and Lsa(ANEPP). Theorem 2
presented in the third section is just a preliminary result in this area.
Is any of the two classes closed under row and column concatenation?

5. A natural question is whether adding the row/column insertion op-
eration to the operations considered so far would augment the power
of the networks. As we do not have anymore the restriction on the
space of the recognition process this might be the case. For example,
these networks might be able to simulate array contextual grammars
as defined in [25].

We believe that the problems mentioned above together with other prop-
erties of these classes deserve further investigation.

24

References

[1] A. Amir, G. Benson, M. Farach, Alphabet independent two dimensional
matching, Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, 1992, 59–68.

[2] S. Bozapalidis, A. Grammatikopoulou, Recognizable picture series, J. of
Automata, Languages and Combinatorics, 10, 2-3(2005), 159–183.

[3] S. Bozapalidis, Picture deformation, Acta Informatica, 45, 1(2008), 1–
31.

[4] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana, Hybrid NEPs are com-
putationally complete, Acta Informatica, 41, 4-5(2005), 257–272.

[5] K.S. Dersanambika, K.G. Subramanian, A. Roslin Sagaya Mary, 2D and
3D pictural networks of evolutionary processors, Proc. 1st International
Work-Conference on the Interplay between Natural and Artificial Com-
putation LNCS 3562 (2005), 92–101.

[6] D. Giammarresi, A. Restivo, Two-dimensional languages. In [19], 215–
267.

[7] D. Giammarresi, A. Restivo, Recognizable picture languages, Int. J.
Pattern Recognition and Artificial Intelligence, 6 (1992), 241–256.

[8] D. Giammaresi, A. Restivo, S. Seibert, W. Thomas, Monadic second-
order logic over rectangular pictures and recognizability by tiling sys-
tems, Infor. Comput., 125, 1(1996), 32–45.

[9] I. Inoue, I. Takanami, A survey of two-dimensional automata theory,
Proc. 5th Int. Meeting of Young Computer Scientists, LNCS 381 (1990),
72-91.

[10] M. Margenstern, V. Mitrana, M. Perez-Jimenez, Accepting hybrid net-
works of evolutionary systems, DNA Based Computers 10 LNCS 3384,
Springer-Verlag, Berlin, 235–246, 2005.

[11] K. Marriott, B. E. Meyer, Visual Language Theory, Springer, 1998.

[12] C. Mart́ın-Vide, V. Mitrana, Networks of evolutionary processors: re-
sults and perspectives, Molecular Computational Models: Unconven-
tional Approaches, Idea Group Publishing, Hershey, 2005, 78-114.

25

[13] I. Maürer, Characterizations of recognizable picture series, Theoretical
Computer Science 374 (2007), 214–228.

[14] I. Maürer, Weighted picture automata and weighted logics, STACS 2006,
LNCS 3884, Springer Berlin, 2006, 313–324.

[15] V. Mitrana, K.G. Subramanian, M. Tătărâm, Pictural networks of evo-
lutionary processors, Romanian Journal of Information Science and
Technology 6(2003), 189–198.

[16] M. Nivat, A. Saoudi, K.G. Subramanian, R. Siromoney, V.R. Dare, Puz-
zle grammars and context-free array grammars, Int. J. Pattern Recog-
nition and Artificial Inteligence, 5 (1991), 663–676.

[17] A. Rosenfeld, A.C. Kak, Digital Picture Processing, Academic Press,
New York, 1982.

[18] A. Rosenfeld, R. Siromoney, Picture languages – a survey, Languages of
design, 1 (1993), 229–245.

[19] G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages,
Springer–Verlag, Berlin, 1997.

[20] D. Sankoff et al., Gene order comparisons for phylogenetic infer-
ence:evolution of the mitochondrial genome, Proceedings of the National
Academy of Sciences of the United States of America 89, (1992), 6575–
6579.

[21] G. Siromoney, R. Siromoney, K. Krithivasan, Abstract families of ma-
trices and picture languages, Computer Graphics and Image Processing,
1 (1972), 284–307.

[22] G. Siromoney, R. Siromoney, K. Krithivasan, Picture languages with
array rewriting rules, Information and Control, 22 (1973), 447–470.

[23] K.G. Subramanian, R. Siromoney, V.R. Dare, A. Saoudi, Basic puz-
zle languages, Int. J. Pattern Recognition and Artificial Intelligence, 9
(1995), 763–775.

[24] K.G. Subramanian, R. Siromoney, On array grammars and languages,
Cybernetics and Systems, 18 (1987), 77–98.

26

[25] K.G. Subramanian, Do Long Van, P. Helen Chandra, Nghiem Do Quyen,
Array grammars with contextual operations, Fundamenta Informaticae,
83, 4(2008), 411–428.

[26] P.S. Wang, Hierarchical structure and complexities of parallel isometric
patterns, IEEE Trans. PAM I, 5 (1975), 92.

[27] P.S. Wang, Sequential/parallel matrix array languages, Journal of Cy-
bernetics, 5 (1975), 19–36.

[28] P.S. Wang, H. Bunke (Eds.), Handbook on Optical Character Recognition
and Document Image Analysis, World Scientific, 1996.

[29] R.F. Zhu, T. Takaoka, A technique for two-dimensional pattern match-
ing, Communications of the ACM, 32, 9(1989), 1110–1120.

27

