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Miomir S. Stanković
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1 Basics of q-calculus

The first letter in the name ”q-calculus” can be considered like:

(1) the first letter of ”quantum” (”quantum calculus”);

(2) the parameter q which is included in all further discussions;

(3) the symbol of q-world, which always can be returned to the well-

known mathematical world when q ↗ 1.

[1] G. Andrews, R. Askey, and R. Roy, ”Special functions”, Cam-
bridge University Press, Cambridge, 1999.

[2] G. Gasper, M. Rahman, ”Basic Hypergeometric Series”, Encyclo-
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The description of a TC protocol by q–calculus 4
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method for solving systems of equations, Applied Mathematics and Computation,

vol. 168 (2005), 1432-1448.
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1.2 The properties of q-numbers

For any complex number λ, its q-analog is

[λ]q :=
1 − qλ

1 − q
, lim

q↗1
[λ]q = λ.
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Figure 1. Number [3]q = 1 + q + q2 when q ↑ 1.
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For addition, it is valid

[m]q + qm[n]q = [m + n]q.

For a positive integer number [n]q, q-factorial is

[0]q! := 1, [n]q! := [n]q[n − 1]q · · · [1]q.

The q-binomial coefficients can be defined by
[
n

k

]

q

:=
[n]q!

[k]q![n − k]q!
.

It is a polynomial in q of degree k(n − k).
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Figure 2. q-Binomial coefficients.
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1.3 The Pochhammer symbol

The Pochhammer’s symbol is

(a)0 := 1, (a)k :=
k∏

i=1

(a + i − 1), (k ∈ N).

In order to find its q-analog, we consider the product

k∏

i=1

[α + i − 1]q =
k∏

i=1

1 − qα+i−1

1 − q
.

Putting a = qα, we can define
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The description of a TC protocol by q–calculus 9

1.4 The q–Pochhammer symbol

the q–Pochhammer symbol of a number a like

(a; q)0 := 1, (a; q)k :=
k∏

i=1

(1 − aqi−1), k = 1, 2, . . . .

In the limit case, we have

lim
q↗1

(qα; q)k

(1 − q)k
= (α)k.

By the properties

(a; q)∞ =
∞∏

k=0

(1 − aqk), (a; q)n =
(a; q)∞

(aqn; q)∞
,
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The description of a TC protocol by q–calculus 10

we can introduce

(a; q)λ :=
(a; q)∞

(aqλ; q)∞
(λ ∈ C),

where we take the main branch of the complex function xλ.
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Figure 3. The function (a; q)λ for λ = 2.5 when q ↑ 1.
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1.5 The q-binomial theorem

The binomial formula

(x + y)m =
m∑

n=0

(
m

n

)
xmym−n.

and its generalization, the binomial theorem

∞∑
n=0

(a)n

n!
zn = (1 − z)−a (|z| < 1, a ∈ R).

have their analog in q-calculus.
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We will start with

f(a, z) =
∞∑

n=0

(a; q)n

(q; q)n

zn (|z| < 1)(|q| < 1)(a, q, z ∈ C).

Notice

f(q, z) =
∞∑

n=0

zn = (1 − z)−1.

Since

f(a, z) = 1 +
∞∑

n=1

(aq; q)n−1

(q; q)n

(1 − a) zn = (1 − az) f(aq, z)

Predrag M. Rajković, Miomir S. Stanković, Sladjana D. MarinkovićVersion 2.1 – November 9, 2009



The description of a TC protocol by q–calculus 13

by repeating this step (n − 1)-times, we yield

f(a, z) = (1 − az)(1 − aqz) · · · (1 − aqn−1z) f(aqn, z).

When n → ∞, we get

f(a, z) = (az; q)∞ f(0, z) .

Putting a = q, we have

f(0, z) =
f(q, z)

(qz; q)∞
=

1

(1 − z)(qz; q)∞
=

1

(z; q)∞
.
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Hence

f(a, z) =
(az; q)∞
(z; q)∞

.

So, we have proved the q-binomial theorem

∞∑
n=0

(a; q)n

(q; q)n

zn =
(az; q)∞
(z; q)∞

(|z| < 1, |q| < 1).
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Figure 4. q-Binomial theorem for a = 1/4 .
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1.6 The q-hypergeometric function

The q-hypergeometric function is given by

rΦs

(a1, . . . , ar

b1, . . . , bs

∣∣∣q; z
)

=
∞∑

k=0

(a1, . . . , ar; q)k

(b1, . . . , bs; q)k

(
(−1)kq(k

2)
)1+s−r zk

(q; q)k

.

It is valid

lim
q↗1

rΦs

(qa1 , . . . , qar

qb1 , . . . , qbs

∣∣∣q; (q − 1)1+s−rz
)

= rFs

(a1, . . . , ar

b1, . . . , bs

∣∣∣z
)

.
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1.7 The q-special functions

From the q-gamma function Γq(x), we expect that it has the following

properties

Γq(1) = 1, Γq(x + 1) = [x] · Γq(x)

and

lim
q↑ 1

Γq(x) = Γ(x) =
∫ ∞

0

txe−tdt .

That is why it is defined by

Γq(x) := (q; q)x−1 · (1 − q)1−x .
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1.8 The q–exponential function

We can introduce the analogs of the elementary mathematical functions

in the following way:

the small and the big q-exponential function

eq(z) := 1Φ0

( 0

−
∣∣∣ q; z

)
=

∞∑

k=0

zk

(q; q)k

,
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Eq(z) := 0Φ0

(−
−

∣∣∣ q; −z
)

=
∞∑

k=0

q(k
2)

(q; q)k

zk.

It is valid

eq(z) · Eq(−z) = 1,

lim
q↗1

eq((1 − q)z) = lim
q↗1

Eq((1 − q)z) = ez.
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the small q-trigonometric functions

sinq(z) :=
eq(iz) − eq(−iz)

2i
=

∞∑

k=0

(−1)k

(q; q)2k+1

z2k+1,

cosq(z) :=
eq(iz) + eq(−iz)

2
=

∞∑

k=0

(−1)k

(q; q)2k

z2k.
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Similarly, the big q-trigonometric functions are

Sinq(z) :=
Eq(iz) − Eq(−iz)

2i
,

Cosq(z) :=
Eq(iz) + Eq(−iz)

2
.
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2 Basics of stochastic processes

2.1 Probability space

A probability space associated with a random experiment is a triple

(Ω, F , P ), where:

- Ω is the set of all possible outcomes of the random experiment, and

it is called the sample space;

- F is a family of subsets of Ω which has the structure of a σ–field;

- P : F → [0, 1] is a function which associates a number P (A) to

each set A ∈ F and it is called a probability measure.

D. Nualart, ”Seminar on Stochastic Analysis, Random Fields and Ap-
plications”, Ascona 2002.
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2.2 Random variable

A random variable is a mapping X : Ω → R which is F-measurable.

The mathematical expectation of a random variable X is defined as

the integral of X with respect to the probability measure P :

E(X) =
∫

Ω

X dP .

The function defined by

FX(x) = P (X ≤ x) : R → [0, 1]

is called the distribution function of the random variable X.
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2.3 The discrete random variable

We say that a random variable X is discrete if it takes a finite or

countable number of different values xk with probability pk, i.e.

P (X = xk) = pk (k ∈ N0).

Its expectation will be

E(X) = x1p1 + x2p2 + · · · .

The probability-generating function of a discrete random variable is

a power series representation of the probability mass function of the

random variable, i.e.,

G(z) = E(zX) =
∞∑

k=0

pkzk .
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2.4 The Poisson distribution

The Poisson distribution is a discrete probability distribution that ex-

presses the probability of a number of events occurring in a fixed period

of time if these events occur with a known average rate and indepen-

dently of the time since the last event.

The certain random variables X count the number of discrete occur-

rences that take place during a time-interval of given length. If the

expected number of occurrences in this interval is λ, then the proba-

bility that there are exactly k is equal to

P (X = k) =
λk

k!
e−λ (λ > 0, k ∈ N0) .

The Poisson distribution can be applied to systems with a large number

of possible events, each of which is rare.
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2.5 The absolutely continuous random variable

We will say that a random variable X has a probability density fX(t)
if fX : R → R+ and

P (a < X < b) =
∫ b

a

fX(t) dt (∀a, b : a < b) .

Random variables admitting a probability density are called absolutely

continuous.

Its distribution function is

FX(t) =
∫ t

−∞ fX(y) dy .

The Laplace transform of the random variable X with density function

fX(t) is

L[X(t)] =
∫ ∞
0

fX(t)e−stdt .
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2.6 The random variable

with exponential distribution

A random variable X : Ω → (0, ∞) has exponential distribution of

parameter λ if

P (X > t) = e−λt (∀t > 0) .

Then X has a density function

fX(t) = λe−λt1(0,∞)(t) .

The mean of X is given by

E(X) =
1

λ
.
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Its Laplace transform is

L[X(t)] =
∫ ∞

0

λe−λte−stdt

∫ ∞

0

λe−(s+λ)tdt =
λ

λ + s
.

A random variable X : Ω → (0, ∞) has an exponential distribution if

and only if it has the following memoryless property

P (X > s + t
∣∣ X > s) = P (X > t) (∀s ≥ 0, ∀t ≥ 0) .
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2.7 The Stochastic Process

A stochastic process with state space S is a collection of random vari-

ables (Xt, t ∈ T ) defined on the same probability space (Ω, F , P ).

The set T is called its parameter set.

If T = N0, the process is said to be a discrete parameter process.

In the continuous case, the usual examples are T = R+ and T = [a, b].

The index t represents time, and Xt is the ”state” of the process at

time t.

The state space is often R (the real-valued process).

For every fixed ω ∈ Ω, the mapping t 7→ Xt(ω)(t ∈ T ), is a sample

function of the process.
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2.8 The Poisson process

A Poisson process is the stochastic process in which events occur con-

tinuously and independently of one another.

The Poisson process is:

- a collection {X(t) : t ≥ 0} of random variables;

- where X(t) is the number of events that have occurred up to time t.

The number of events between time a and time b is given as

X(b) − X(a) and has a Poisson distribution.

Each realization of the process {X(t)} is a non-negative integer-valued

step function that is non-decreasing.
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3 Transmission Control Protocol

The main data protocol of the Internet is

TCP (Transmission Control Protocol).

It is designed to adapt to the various traffic conditions of the network:

- a TCP connection between a source and a destination progressively

increases its transmission rate until it receives some indication that the

capacity along its path in the network is almost fully utilized.

- when the capacity of the network cannot accommodate the traffic,

the data rate of the connection is drastically reduced.

[1] F. Guillemin, Ph. Robert, and B. Zwart, AIMD algorithms and expo-
nential functionals, Ann. Appl. Probab. Vol. 14, No. 1 (2004), 90–117.
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A given connection has a variable W which gives the maximum number

of packets that can be transmitted without receiving any acknowledge-

ment from the destination.

The variable W is called the congestion window size.

If all the W packets are successfully transmitted, then W is increased

by 1, so that W packets can be sent for the next round.

Otherwise W is divided by 2 (detection of congestion).

An algorithm can be described as follows:

W =





W + 1, if no loss among the W packets,

bδW c, otherwise

where δ = 1/2 and bxc is the integer part of x ∈ R.

Predrag M. Rajković, Miomir S. Stanković, Sladjana D. MarinkovićVersion 2.1 – November 9, 2009



The description of a TC protocol by q–calculus 38

Via simulation, it was derived an asymptotic estimate for

a constant loss rate α.

Let W α
n denote the congestion window size over the nth RTT (Round

Trip Time) interval, i.e. the total number of packets sent during this

time interval.

The evolution of the process is given by

W α
n+1 =





W α
n + 1, if none of W packets is lost,

max
(bδW α

n c, 1
)
, otherwise.

In the non-correlated case, each packet has a probability p = 1 − e−α

to be lost.
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Let tα
n denotes the index of nth packet which is lost. The independence

assumption implies that the sequence

tα
n+1 − tα

n ≈ 1

α
En (α ≈ 0) ,

Where En is exponentially distributed with parameter 1. Asymptoti-

cally, the loss process can thus be described as a Poisson process. When

a packet loss occurs several packets are also lost during the following

RTT intervals.

Asymptotically, at the packet level, the loss process can thus be de-

scribed as a Poisson process with clumps, i.e. a standard Poisson pro-

cess with ”clouds” around each of its points.

[2] J. Bertoin , Ph. Biane, M. Yor, Poissonian exponential function-
als, q-series, q-integrals, and the moment problem for log-normal distribu-
tions, Proceedings Stochastic Analysis, Ascona, 2002.
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3.1 The invariant distributions

Let us consider random variables:

(i) E0 is an exponentially distributed with parameter 1;

(ii) X1 is independent of E0 such that P(X1 > 0) = 1;

For β ∈ (0, 1), we investigate the random variable I independent of

E0 and X1 which is the solution to the equation

(1) I
dist.= βX1I + E0 .
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By iterating the relation (1), the variable I can be represented as

I =
∞∑

n=0

βSnEn, where Sn =
n∑

k=1

Xk,

and (En) is a sequence of exponentially distributed random variables

with parameter 1. Also, from (1), we can prove that

L
(
In

)
=

n

1 − L
(
βnX1

)L
(
In−1

)
(n ∈ N) .

Then

L
(
e−λI

)
=

∞∑
n=0

(−λ)n

n!
L(In) =

∞∑
n=0

(−λ)n

∏n
k=1

(
1 − L(βkX1)

) .
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If the random variable X1 has a rational generating function, i.e. there

exist two polynomials P and Q such that E(zX1) = P (z)/Q(z).

Then

1 − E(zX1) = (1 − z)
∏N

j=1(1−bjz)∏M
i=1(1−aiz)

.

Hence the following representation for the Laplace transform of random

variable I can be established:

L
(
e−λI

)
=

∞∑
n=0

(a1β; β)n · · · (aMβ; β)n

(b1β; β)n · · · (bNβ; β)n

(−λ)n

(β; β)n

.

The last expression for the Laplace transform can be transformed so

that it can be expressed as a q–hypergeometric functions. This suggests

that q–calculus is the natural setting to study the density of exponential

functionals.
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3.2 The shifted geometric distribution

Let us consider the case when has a shifted geometric distribution

P (X1 = n) = an−1(1 − a) (0 < a < 1, n ∈ N)

The generating function is

E(zX1) =
(1 − a)z

1 − az
⇒ 1 − E(zX1) =

1 − z

1 − az
(|z| ≤ 1) .

If a /∈ {βk : k ∈ N}, then

L
(
e−λI

)
=

∞∑
n=0

(aβ; β)n

(β; β)n

(−λ)n.
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Thank You for your attention!

THE END
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