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1. Introduction

Let X, Y, Z be Hilbert spaces, and l&(.X, Y) denote the set of all linear
bounded operators fronX to Y. We abbreviateC(X) = L£(X, X). For
A € L(X,Y) we denote byV(A) andR(A), respectively, the null-space
and the range ofi. An operatorB € L(Y, X) is an inner inverse ofl, if
ABA = A holds. In this casél is inner invertible, or relatively regular. It is
well-known thatA is inner invertible if and only ifR(A) is closed inY". The
Moore-Penrose inverse of € L£(X,Y) is the operatoX € L(Y, X) which
satisfies the Penrose equations

() AXA=A, 2)XAX =X, (3)(AX)" = AX, (4) (XA) = XA.

The Moore-Penrose inverse df exists if and only ifR(A) is closed inY". If
the Moore-Penrose inverse df exists, then it is unique, and it is denoted by
AT,

If 0 C {1,2,3,4}, and X satisfies the equatior$) for all i € ¢, thenX is an
f-inverse ofA. The set of alb-inverses ofA is denoted byA{#}. If R(A) is
closed, thed{1,2,3,4} = {AT}.



Lemma 1.1.Let A € L£(X,Y) have a closed range. Thefh has the matrix
decomposition with respect to the orthogonal decompositions of spaces

R(A*) @ N(A)andY = R(A) ® N (A*):

) - )

A= [o 0 [ N(A)

whereA; is invertible. Moreover,

a= 0 L) = V-



Lemma 1.2.Let A € £(X,Y) have a closed range. Let; and X, be closed
and mutually orthogonal subspacesXf such thatX = X; & X,. LetY; and

Y, be closed and mutually orthogonal subspace¥ psuch thaty” = Y| & Y5.
Then the operatod has the following matrix representations with respect to
the orthogonal sums of subspacks= X; & X, = R(A*) & N(A), and
Y=RA)SNA) =Y ®Y>:

(@)
- A A | | X | | R(A)
o 0| X N(A% |
whereD = A A} + A, A mapsR(A) into itself andD > 0 (meaningD > 0

invertible). Also,
AiD™1 0
T — 1
A= [A;Dl o] '



® A R(A") Y,
o 1 0 : 1
A=) [N |~ )
whereD = A;A;+ A5 A; mapsR(A*) into itself andD > 0 (meaningD > 0
invertible). Also,

D—lA* D—lA*
T _ 1 2
A_[ D ]

Here A; denotes different operators in any of these two cases.



Let A be Hilbert spaces.

An operatorP € L(H) is idempotent ifP* = P.

An operator(Q € L(H) is called orthogonal projection f) = @Q* = Q*,
where()* denotes the adjoint operator ©f.

A bounded linear operatdf’ € L(H) is Drazin invertible if and only ifl’
has finite index, which is equivalent to the fact thas a finite order pole of
the resolvent operataR,(7') = (A — T)!, say of orderk. In such case,
ind(T) = k and0 is not the accumulation point of(T").

FogT € L(H), the Drazin inversd™ of T is unique if it exists and7™)? =
(T°)".

The Drazin invertibility of an operator i€ ( H) is similarly invariant, i.e. ifl’

is Drazin invertible andS € L(H) is an invertible operator, thef™'T'S is
Drazin invertible and S~'7'S)? = S~'71S.



Lemma 1.3.1f A € L£(X) and B € L(Y) are Drazin invertible,C' €
LY, X)andD € L(X,Y), then

A C A 0
Mz[o B] anszlD B]

are also Drazin invertible and

A S BY 0
Md[o Bd]?Nd[S Ad]7 (1)

whereS =Y (AY)""2CB"B™ + > > ATA"C(B)""* — A‘C'B*.
Lemma 1.4.Let M € L(H & K) have the operator matrix form

A B
M—(OC>. (2)

If two of the element8/, A andC' are Drazin invertible, then the third element
Is also Drazin invertible. In particular, it = 0, thenM is Drazin invertible if
and only if A andC' are Drazin invertible.



Lemma 1.5.Let M € L(H @ K) have the operator matrix form

0 A
M:(BO>. 3)

ThenM is Drazin invertible if and only ifAB (or B A) is Drazin invertible. In
this case,

M= ( B(ABY “ )



Let C™*" be the set ofn. x n complex matrices. Byank(A), A", A*, R(A)
and NV (A) we denote the rank, transpose, conjugate transpose, range (colun
space) and null space, respectively/bf C™*".

If Aisacomplex matrix, then the smallest non-negative intégarhich satis-
fiesrank(A**!) = rank(A"), is called the index ofd, denoted bynd(A). If
ind(A) = 1, then there exists the unique matri¥ which satisfies the equa-

tions:
AATA = A, ATAAY = A9, AAY = ATA.

The matrixA is the group inverse ofl. Moreover,ind(A) = 0 if and only if A
is invertible, and ind this casd ! = A¢Y.

Definition 1.1. Let A € C"™*" be of rankr, let T" be a subspace df” of
dimensions < 7, and letS be a subspace df"” of dimensionmn — s. If a
matrix X € C"* satisfies

XAX =X, R(X)=T, N(X)=S5,

then X is called the outer inverse or generalized inverselpfind the notation
X = Agg is common.



The main characterization oﬁf})s-generallzed inverse is given as follows.

Lemma 1.6.Let A € C™*" be of rankr, let 7" be a subspace df" of di-
mensions < r, and letS be a subspace df™ of dimensionn — s. ThenA
has an outer invers& such thatR(X) = T and N (X) = S if and only if

AT @ S = C™, and in this caseX = Ag?)s IS unique.
We also need the following results.

Lemma 1.7.Let A € C™*" be of rankr, let’T' be a subspace " of dimen-
sions < r, and letS be a subspace d" of dimensionn — s. In addition,
supposés € C"™ such thatR(G) = T and N (G) = S. If A has an outer

inverseAg%, thenind(AG) = ind(GA) = 1. Further, we have

ADs = (GAYG = G(AG)’. (4)
Lemma 1.8.If A satisfies the conditions of Lemrha/, then

rank(AG) = rank(GA) = rank(G).



If A is square and invertible, then the condition numberdofs defined as
k(A) = ||A||-||A~Y|, where|| - || is some matrix norm. The study of condition
numbers is important in the theory of stability of linear systems! i§ rectan-
gular (or even square and singular), then we do not have the condition numb:
of A in the previous sense. But still, we have some generalized inverde of
sayA~. Now, the "generalized“ condition number dfrelated toA™ is defined
as||Al| - ||[A~||. Generalized condition numbers have applications in studying
singular linear systems.

The following result is known as the Schur decomposition theorem.

Lemma 1.9.(Schur decompositionj A € C"*", then there exists an unitary
U € C™" such that
U'AU=T=D+ N

whereD = diag(\, ..., \,) and N € C™*" is strictly upper triangular.
Furthermore,U can be chosen so that the eigenvallesppear in any order
along the diagonal.



Let (X, p) be a complete metric space. A méAp X — X such that for some
constant\ € (0, 1) and for everyr,y € X

d(Tw, Ty) < A+ max{ p(z, ), ple, Tx), p(y, Ty), p(, Ty). ply, Tx) | ()

Is calledquasicontraction
Let £/ be a real Banach space afta subset ofy. P is called a cone if and

only if:

(i) Pisclosed, nonempty, ankt # {0},

(i) abeR,a,b>0,z,ye P=—ax+byec P
(i) ze Pand—x € P— z = 0.

Given a coneP C E, we define a partial orderingt with respect toF by
r < yifandonlyify —x € P. We shall writexr < y if x < y andx # y; we
shall writex < y if y — x € int P, where int P denotes the interior aP.

The coneP’ is called normal if there is a numbdt > 0 such that for all
x,y € F,

0<z<y imples |z| < Kly|.



Definition 1.2. Let X be a nonempty set. Suppose the mapging x X +—
I satisfies

(d1) 0 < d(z,y)forall x,y € X andd(z,y) = 0if and only ifz = y;
(d2) d(x,y)=d(y,x) forallz,ye X;
d3) d(z,y) <d(x,z)+d(z,y) foralxy, z€e X,

Thend is called a cone metric oX, and (X, d) is called a cone metric space.

For F' C E, we defined(F') = sup{||z| : x € F}.

Let z,, be a sequence IX, andx € X. Ifforeveryc € EF with 0 < ¢
there isny, € N such that for alln > ny,d(x,,x) < ¢, thenz, is said to
be convergent, and,, converges tac, and we denote this bym,, x,, = x, or
r, — x, (n — o00). If for everyc € F with 0 < cthere isn, € N such that
for all n,m > ngy, d(x,, x,) < c, thenz, is called a Cauchy sequencein

If every Cauchy sequence is convergeni&inthen.X is called a complete cone
metric space.

Let us recall that ifP is a normal cone then,, € X convergesta € X if and
only if d(x,,x) — 0,n — oo. Further,z,, € X is a Cauchy sequence if and
only if d(x,,, z,,) — 0,n,m — oo.



If £/ is a real Banach space with cohtand ifa < A\a wherea € P and
0 < A < 1, thena = 0. The conditiona < Aa means thaba — a € P, i.e.,
— (1= X)a € P.Sincea € Pandl —\ > 0,thenalsd1 — \)a € P. Thus
we have(l — N)a € PN (—P) = {0}, hencea = 0.

Let (X, d) be a cone metric space. Then:

If o <2 <y,anda > 0, then it is easy to prove that< ax < ay.

f 0 <z, <y, foreachn € N, andlim, z,, = z, lim,y, = vy, then
0<z <.

In the next definition we define quasi contraction on cone metric space. Such
mapping is a generalization @firi€’s quasi contraction.

Definition 1.3. Let (X, d) be a cone metric space. A mgp: X — X such
that for some constant € (0, 1) and for everyr,y € X, there exista; €

C(f,2,y) = {d(z.y).d(x, fz),d(y, fy), d(z, fy), d(y, =) }, such that

Is called quasi contraction.
If f: X — X,andn € N, we set

O(x;n) = {:I:,f:t:,f%, ...,f”x}, and O(x; 00) = {Zl?,fl’,f2$, }



2. Reverse order law for the Moore-Penrose
Inverse

If S'is a semigroup with the unit, and ifa, b € S are invertible, then the equal-
ity (ab)™* = b~'a"' is called the reverse order law for the ordinary inverse. It
Is well-known that the reverse order law does not hold for various classes c
generalized inverses.

In this section we present new results related to the reverse order law for tr
Moore-Penrose inverse of operators on Hilbert spaces. Some finite dimension
results are extended to infinite dimensional settings (Y. Ti#sing rank for-
mulas to characterize equalities for Moore-Penrose inverses of matrix products
Appl. Math. Comput. 147 (2004), 581-600). The results of this section are
proved in the paper:

D.S. Djordjeve, N.C. Dingic, Reverse order law for the Moore—Penrose inverse
J. Math. Anal. Appl. 361 (1) (2010), 252-261.



Theorem 2.1.Let X, Y, Z be Hilbert spaces, and lel € L(Y,Z) and
B € L(X,Y) be such thatA, B, AB have closed ranges. Then the following
statements are equivalent:

(a) ABBIATAB = AB:

(b) BTATABBI AT — Bi Al

(c) AIABB' — BBIAA:

(d) ATABBT is an idempotent;
(e) BBTA'A is an idempotent;
() BI(AABB) AT = BiAf:
(9) (ATABBY = BB AT A;



Now we prove the following result.

Theorem 2.2.Let X, Y, Z be Hilbert spaces, and lett € L(Y,Z), B €

L(X,Y) be suchthatd, B, AB have closed ranges. Then the following state-
ments hold:

(@) AB(AB)' = ABB'A' & A*AB = BB'A*AB & R(A*AB) C
R(B) < B'A! € (AB){1,2,3};

(b) (AB)'AB = B'ATAB < ABB* = ABB*A'A & R(BB*A*) C
R(A*) & BTA" € (AB){1,2,4};

(c) The following statements are equivalent:
(1) (AB)' = BTA";
(2) AB(AB)! = ABB'A" and(AB)'AB = B'ATAB;
(3) A*AB = BB'A*AB and ABB* = ABB*A' A;
(4) R(A*AB) C R(B)andR(BB*A*) C R(A").



We also prove the following result.

Theorem 2.3.Let X, Y, Z be Hilbert spaces, and led € L(Y,Z), B
L(X,Y) be such thatd, B, AB have closed ranges. Then we have:

(@ AB(AB)'A = ABB' & A*ABB' = BB'A*A & R(A*AB) C
R(B) < B'A" € (AB){1,2,3};
(b) B(AB)'AB = A'AB < A'ABB* = BB*A'A & R(BB*A*) C
R(A*) & BTA' € (AB){1,2,4};
(c) The following three statements are equivalent:
(1) (AB)' = BTA";
(2) AB(AB)'A = ABB"and B(AB)'AB = ATAB;
(3) A*ABB' = BB'A*Aand A'TABB* = BB*A'A.



Theorem 2.4.Let X, Y, Z be Hilbert spaces, and letlt € L(Y,Z), B €

L(X,Y) be suchthatl, B, AB have closed ranges. The following statements
hold.

(@) (ABB")! = BB'A" & BI(ABB")! = BTA! & R(A*AB)
(b) (ATAB)! = BTATA & (ATAB)'A' = BTA' & R(BB*A*)
(c) The following three statements are equivalent:

(1) (AB)" = BTA";

(2) (ABB")' = BB'A" and(ATAB)" = BTATA;

(3) BI(ABB'")! = B'Atand(ATAB)TA" = BT AT,

R(B).

C
C R(AY).



Theorem 2.5.Let X, Y, Z be Hilbert spaces, and lett € L(Y,Z), B €
L(X,Y) be such thatd, B, AB have closed ranges. Then we have:

(@) B = (AB)'A & R(B) = R(A*AB).
(b) A" = B(AB)! & R(A*) = R(BB*A*).
We need the following auxiliary result.

Lemma 2.1.Let X, Y be Hilbert spaces, le€ € L(X,Y) have a closed
range, and letD € L(Y') be Hermitian and invertible. TheR (DC') = R(C)
if and only if[D, CC'] = 0.

Theorem 2.6.Let X, Y, Z be Hilbert spaces, and let € L(Y,Z), B €
L(X,Y) be such thatd, B, AB have closed ranges. Then we have:

(@) (AB)' = (ATAB)TAT & R(AA*AB) = R(AB);
(b) (AB)! = Bf(ABB!) & R(B*B(AB)") = R((AB)").



3. The Drazin invertibility of the difference
and the sum of two idempotent operators

In this section some equivalents are established of the Drazin invertibility of dif-
ferences and sums of idempotent operators on a Hilbert space, using the spec
theory of linear operators. The results of this section are presented in the pape

D. S. Cvetkove-llic and C. Y. Deng,The Drazin invertibility of the dif-
ference and the sum of two idempoted Comput. Appl. Math.
doi:10.1016/j.cam.2009.09.028.

In the recent years, a number of researchers have considered questions conce
ing the idempotents. The authors obtain results for the Drazin invertibility of
the sum and difference of the idempotents analogous to those of Koliha an
Rakcevic (J. J. Koliha, V. Rakoevic and I. Strakrabal he difference and sum

of projectors Linear Algebra and its Applications, 388 (2004), 279-288; J. J.
Koliha and V. Rakgevic, Invertibility of the sum of idempotentkinear and
Multilinear Algebra 50 (2002), 285-292; J. J. Koliha and V. Radkac, In-
vertibility of the difference of idempotentsinear and Multilinear Algebra 51
(2003), 97-110) in the case of ordinary invertibility.



The following theorem is a well-known result which we state for the sake of
completeness:

Theorem 3.1.Let P be an idempotent an€@) be an orthogonal projection in
L(H). The following statements are equivalent:

(1) PQ is Drazin invertible,

(2) QP is Drazin invertible,

(3) PQP is Drazin invertible,
(4) QPQ) is Drazin invertible,
(5) P*(Q is Drazin invertible,
(6) QP is Drazin invertible,
(7) P*QQ P~ is Drazin invertible,
(8) QP*( is Drazin invertible.



If in Theorem3.1we replaceP and( by I — P andl — (), respectively, we
get the following results:

Corollary 3.1. Let P be an idempotent an@ be an orthogonal projection in
L(H). The following statements are equivalent:

(1) (I — P)(I — Q) is Drazin invertible,

(2) (I — Q)(I — P) is Drazin invertible,

(3) (I — P)(I — Q)(I — P) is Drazin invertible,
4) (I —Q)(I — P)(I — Q) is Drazin invertible,
(5) (I — P)*(I — Q) is Drazin invertible,

(6) (I — Q)(I — P)* is Drazin invertible,

(7) (I — P)*(I — Q)(I — P)*is Drazin invertible,

8) (I — Q)(I — P)*(I — Q) is Drazin invertible.

Lemma 3.1.LetA, B € L(H). Thenl — AB is Drazin invertible if and only
if I — BAis Drazin invertible.



Let us remark that the analogue result as in the next theorem concerning ¢
dinary invertibility is proved in Theorem 3.2 ( J. J. Koliha and V. Rédwi,
Invertibility of the difference of idempotentsnear and Multilinear Algebra 51
(2003),).

Theorem 3.2.Let P, () be idempotents i ( H ). ThenP — () is Drazin invert-
ible if and only if/ — PQ) and P + () — P() are Drazin invertible.

Corollary 3.2. Let P, () be idempotents i ( H ). The following statements are
equivalent:

(1) I — P(Q) is Drazin invertible,

(2) P — P() is Drazin invertible,

(3) I — PQP is Drazin invertible,

(4) P — PQP is Drazin invertible,

(5) I — QP is Drazin invertible,

(6) ) — Q)P is Drazin invertible,

(7) I — QQP(Q) is Drazin invertible,

(8) ) — QQPQ) is Drazin invertible.



As before, if in Corollary 3.4 we replac® and@) by I — P andl — () ,
respectively, we have the following result:

Corollary 3.3. Let P, () be idempotents ilC(H). The following statements
are equivalent:

(1) P + @Q — PQ is Drazin invertible,

(2) Q — P(Q) is Drazin invertible,

)P + (I — P)Q — (I — P)QP is Drazin invertible,

(4) (I — P)Q(I — P) is Drazin invertible,

(5) P + ) — Q)P is Drazin invertible,

(6) P — QP is Drazin invertible,

(NQ+ (I —Q)P — (I —Q)PQ is Drazin invertible,

(8) (I — Q)P(I — Q) is Drazin invertible.

Corollary 3.4. (1) Let P and () be orthogonal projections i (H ). Then the

conditions in Theorem 3.3, Corolla.2 and Corollary3.3 are all equivalent
to the fact thatP + () is Drazin invertible.

(2) Let P,Q € L(H) be idempotents. TheR — () is Drazin invertible if and
only if one of the conditions from the CorollaBy2 and one of the conditions
from the Corollary3.3hold.



Lemma 3.2.Let P € L(H) be an idempotent an@ € L(H ) be an orthogo-
nal projection. Thern” and () have the following operator matrices

( 1 Py Pis P
I P24 P25 P26

I P34 P35 P36
; , (7)

0

\ 0 )
I
i |
Q _ : Ql Q%([ o Ql)%D
D*Qi(I — Q)2 D*(I —@Q1)D
0
\ Y
with respect to the space decompositidn= Zle H;, whereP;; is an oper-
ator fromH; into H;, 1 < i < 3,4 < j <6, Q) is a positive contraction

on H3, 0 and1 are not the eigenvalues @}, D is a unitary operator fron¥d,
onto H3; and the entries omitted in the formula) and (8) are zero.

(8)




4. Condition number related to the outer In-
verse of a complex matrix

In this section we obtain the formula for computing the condition number of
a complex matrix, which is related to the outer generalized inverse of a givel
matrix. We use the Schur decomposition of a matrix. This results are proved i
the paper

D. Mosic, D.S. Djordjeve, Condition number related to the outer inverse of a
complex matrixAppl. Math. Comput. doi:10.1016/j.amc.2009.09.023.

These results generalize some early work (H. Diao, M. Qin, Y. Wendition
numbers for the outer inverse and constrained singular linear systgnl.
Math. Comput. 174 (2006) 588—-612; Y. Wei, N. Zha@gndition number with
generalized inverseﬁl% and constrained linear systemd. Comput. Appl.
Math. 157 (2003) 57-72.), because of the well-posed properties of the Schi
decomposition. Some results are established for the condition number of tr
generalized inverse and the generalized inverse solution of a linear system, L
ing a special norm called)-norm which depends on the Jordan canonical
form of A. The computation of the Jordan canonical form is an ill-posed prob-
lem.



Let A € C™*" satisfies the following condition:
rank(A¥) =7, ind(A) =k, R(A")=TR(A"). (9)

We prove the following result.

Theorem 4.1.Let A, GG, T" and S be the same as in Lemnfa7, p =
rank(AG), R(AG) = R((AG)") andR(GA) = R((GA)*). Then we have

_ Al 0 * _ Glo *
A_V[O AJU, G—U[O O]v

0 0

whereU andV are unitary matricesA; and (', are nonsingular matrices.

—1
AR = U [Al O] v (10)



In this section we consider the following linear system
Ar=b, x €T,

whereA € C™", b € C™. The generalizedﬁl%-inverse solutionr has the

form
T = A%)Sb.

If ' is a continuously differentiable functiod” : C™" x C" —
C", (A,z) — F(A,z), then the absolute condition number bf at x is

the scalat| F’(x)||. The relative condition of” atx is %
The following operator:

F:C™"xC"— C"
(A,0) — F(A,b) = AQsb=x

is differentiable function, if the perturbatiaid in A fulfils the following condi-
tion:
R(E) C AT, R(E*) C A*S'. (11)

It is easy to verify that11) is equivalent to

AAPDE=FE, EAYA=E. (12)



We get the explicit formula for the condition number of the generali/ﬁézf}-
inverse solution by means of the 2-norm and Frobenius norm.

Theorem 4.2.Let A, G, T and S be the same as in Lemnia7, p =
rank(AG), R(AG) = R((AG)*) and R(GA) = R((GA)*). If the per-
turbation £ in A fulfills the condition(11), then the absolute condition number
of the generalizedil%-inverse solution of a linear system, with the norm

I, B0l = v/ e2[| All% + 3210l

on the data( A, b), and the nornj|z||, on the solution, is given by

IIfEH2
HATst\/ﬁ2 ,

where() = [ g (1) ] andU is the same matrix as if10).




If E satisfies the conditiofil1), then the 2-norm relative condition number of
the generalized inverség,?’)s is defined as

Cond(A) = lim  sup I( >T,S T,SH2

=07 || Bl|2<e] | All2 GHA%)S”?

and the corresponding condition number for the linear systéms-= b is de-
fined as

A+ E)P4(b+ f) — ATKb
Cond(A.b) = lim  sup I Jr5(b+ f) — Asbll2

2)
e—0% || B|<el|Ally cll A% g
Iflla=<elibll I T.S IE

The level-2 condition number of the generalizéﬁ)s-inverse Is defined as

. Cond(A+ E) — Cond(A)|
Cond?(A) = lim su |
A) =g Blhsel Al eCond(A)

and the level-2 corresponding condition number is defined as

. Cond(A+ E,b+ f) — Cond(A,D)|
Cond?(A,b) =lim su | ’ —,
( ) e—0 HEH2SEIII)A||2 GCOHCZ(A, b)

[ fll2<elbll2




First, we proved the following lemmas.
Lemma 4.1.For u, v in Theorem 2.1, there exists € C™*" such that
Sv=—a, |S].=1,

whereS fulfills condition(11).
Lemma4.2.Let A, G, T andS be the same as in Lemria/, p = rank(AG),
R(AG) = R((AG)") andR(GA) = R((GA)"). If ¢ — 0, then

max (A + E)rsll: — | A7slls| = el AZg[l:Cond(A) + O(e),

[ Ell2<e[| Al

provided thatF fulfills the condition(11).



The following results show that for the generaliz‘é&’g—inverse for solving a
linear system, the sensitivity of the condition number is approximately given by
the condition number itself.

Corollary 4.1. Let A, GG, T and S be the same as in Lemnia7, p =
rank(AG), R(AG) = R((AG)*) and R(GA) = R((GA)*). If the per-
turbation £ in A fulfills the condition(11), then the level-2 condition number

. Cond(A+ E) — Cond(A)|
Cond?(A) =1lim su |
A) “”HEMSgﬁh eCond(A)

(13)

satisfies
|Cond®(A) — Cond(A)| < 1. (14)



Corollary 4.2. Let A, G, T and S be the same as in Lemnmia7, p =
rank(AG), R(AG) = R((AG)*) and R(GA) = R((GA)*). If the per-
turbation £ in A fulfills the condition(11), then the level-2 condition number
of linear systemsle = b,z € T,

|[Cond(A+ E,b+ f) — Cond(A,b)|

Cond? A, b)=1lim su 15
(A4,0) = lim ||§||||2§EI|||)3|||2 eCond(A, b) (1)
satisfies
Cond(A,b) 1
%) _ < d?(A,b) < 3Cond(A,b) + 2 16
G+gr  14¢ = oAl dCondd i +2, - (16)
where( = 12z

1AAT b2



Now we present a structured perturbation of the generalized mv@%eby
means of 2—norm. The notatigd| < |B| means thala; ;| < |b; ;| for A =
(a; ;) andB = (b; ;).

Theorem 4.3.Let A, GG, T" and S be the same as in Lemnfa7, p =
rank(AG), R(AG) = R((AG)") andR(GA) = R((GA)"). If [V*EU| <
[V*AU| and || AZSE||; < 1, then

(A+ BE)%, = (I + APLE) A,

whereU andV are the same matrices as (h0).



5. Quasi-contraction on cone metric space

In this section we define and study quasi contraction on cone metric space. F
such a mapping we prove a fixed point theorem. This results are presented

the paper

D. llic, V. Rak&evic, Quasi-contraction on cone metric spaégplied Mathe-
matics Letters, 22 (2009) 728-731.

Among other things, the authors generalize recent result of H. L. Guang and 2
Xian, Cone metric spaces and fixed point theorems of contractive mappings,
Math. Anal. Appl332(2007), 1468-1476, and the main result of Lj. @ric,

A generalization of Banach’s contraction principle, Proc. Amer. Math. 3éc.,
(1974), 267-273, is also recovered.



We start with the next auxiliary result.

Lemma 5.1.Let (X, d) be a cone metric space arfd be a normal cone, Let
f : X — X be a quasi contraction. Then, there exists€ N such that for
everyn > ny,

d(O(x;n)) = max{”d(x, flz)

d(fix,ffx)H 1 1<1<n,1<4,j< no](17)

and

K
1 — K2\
Hd(az,fla:)H 1<i< no}.

§(O(x,00)) < max{ d(z, fx)

, AKS(O(x5ny)),
(18)

Theorem 5.1.Let (X, d) be a complete cone metric space afRde a normal
cone. Suppose the mappirfg: X — X is a quasi contraction. Therf

has a unique fixed point i and for anyx € X, iterative sequencé¢ f"x}

converges to the fixed point.



Now, as a corollary, we get the main result of Guang and Z. X@@ongé metric
spaces and fixed point theorems of contractive mappihddath. Anal. Appl
332(2007), 1468-1476).

Corollary 5.1. Let (X, d) be a complete cone metric space ardbe a normal
cone with normal constank’. Suppose the mappinfy: X — X satisfies the
contractive condition

d(fx, fy) < Md(z.y), forallz,ye X (19)

where)\ € [0, 1) is constant. Therf has a unique fixed point iX’ and for any
xr € X, iterative sequencgf"x} converges to the fixed point.

Let us remark that in Theorem 2.1, settidy = R, P = [0,00), ||z| =
x|,z € F, we get the well-knowCiri¢'s result @& generalization of Banach’s
contraction principle Proc. Amer. Math. Soc45 (1974), 267-273) for quasi-
contraction.
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