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1. Introduction
Let X, Y, Z be Hilbert spaces, and letL(X, Y ) denote the set of all linear
bounded operators fromX to Y . We abbreviateL(X) = L(X, X). For
A ∈ L(X, Y ) we denote byN (A) andR(A), respectively, the null-space
and the range ofA. An operatorB ∈ L(Y,X) is an inner inverse ofA, if
ABA = A holds. In this caseA is inner invertible, or relatively regular. It is
well-known thatA is inner invertible if and only ifR(A) is closed inY . The
Moore-Penrose inverse ofA ∈ L(X, Y ) is the operatorX ∈ L(Y,X) which
satisfies the Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

The Moore-Penrose inverse ofA exists if and only ifR(A) is closed inY . If
the Moore-Penrose inverse ofA exists, then it is unique, and it is denoted by
A†.
If θ ⊂ {1, 2, 3, 4}, andX satisfies the equations(i) for all i ∈ θ, thenX is an
θ-inverse ofA. The set of allθ-inverses ofA is denoted byA{θ}. If R(A) is
closed, thenA{1, 2, 3, 4} = {A†}.
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Lemma 1.1.Let A ∈ L(X, Y ) have a closed range. ThenA has the matrix
decomposition with respect to the orthogonal decompositions of spacesX =
R(A∗)⊕N (A) andY = R(A)⊕N (A∗):

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

whereA1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A∗)
N (A)

]
.
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Lemma 1.2.LetA ∈ L(X, Y ) have a closed range. LetX1 andX2 be closed
and mutually orthogonal subspaces ofX , such thatX = X1⊕X2. LetY1 and
Y2 be closed and mutually orthogonal subspaces ofY , such thatY = Y1⊕ Y2.
Then the operatorA has the following matrix representations with respect to
the orthogonal sums of subspacesX = X1 ⊕ X2 = R(A∗) ⊕ N (A), and
Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =

[
A1 A2
0 0

]
:

[
X1
X2

]
→

[
R(A)
N (A∗)

]
,

whereD = A1A
∗
1 +A2A

∗
2 mapsR(A) into itself andD > 0 (meaningD ≥ 0

invertible). Also,

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(b)

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
Y1
Y2

]
,

whereD = A∗
1A1+A∗

2A2 mapsR(A∗) into itself andD > 0 (meaningD ≥ 0
invertible). Also,

A† =

[
D−1A∗

1 D−1A∗
2

0 0

]
.

HereAi denotes different operators in any of these two cases.
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Let H be Hilbert spaces.
An operatorP ∈ L(H) is idempotent ifP 2 = P .
An operatorQ ∈ L(H) is called orthogonal projection ifQ = Q2 = Q∗,
whereQ∗ denotes the adjoint operator ofQ.
A bounded linear operatorT ∈ L(H) is Drazin invertible if and only ifT
has finite index, which is equivalent to the fact that0 is a finite order pole of
the resolvent operatorRλ(T ) = (λI − T )−1, say of orderk. In such case,
ind(T ) = k and0 is not the accumulation point ofσ(T ).
For T ∈ L(H), the Drazin inverseT d of T is unique if it exists and(T ∗)d =
(T d)∗.
The Drazin invertibility of an operator inL(H) is similarly invariant, i.e. ifT
is Drazin invertible andS ∈ L(H) is an invertible operator, thenS−1TS is
Drazin invertible and(S−1TS)d = S−1T dS.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lemma 1.3. If A ∈ L(X) and B ∈ L(Y ) are Drazin invertible,C ∈
L(Y,X) andD ∈ L(X, Y ), then

M =

[
A C
0 B

]
and N =

[
A 0
D B

]
are also Drazin invertible and

M d =

[
Ad S
0 Bd

]
, N d =

[
Bd 0
S Ad

]
, (1)

whereS =
∑∞

n=0(A
d)n+2CBnBπ +

∑∞
n=0 AπAnC(Bd)n+2 − AdCBd.

Lemma 1.4.LetM ∈ L(H⊕K) have the operator matrix form

M =

(
A B
0 C

)
. (2)

If two of the elementsM, A andC are Drazin invertible, then the third element
is also Drazin invertible. In particular, ifB = 0, thenM is Drazin invertible if
and only ifA andC are Drazin invertible.
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Lemma 1.5.LetM ∈ L(H⊕K) have the operator matrix form

M =

(
0 A
B 0

)
. (3)

ThenM is Drazin invertible if and only ifAB (or BA) is Drazin invertible. In
this case,

M d =

(
0 (AB)dA

B(AB)d 0

)
=

(
0 A(BA)d

(BA)dB 0

)
.
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Let Cm×n be the set ofm× n complex matrices. Byrank(A), A>, A∗,R(A)
andN (A) we denote the rank, transpose, conjugate transpose, range (column
space) and null space, respectively, ofA ∈ Cm×n.
If A is a complex matrix, then the smallest non-negative integerk, which satis-
fies rank(Ak+1) = rank(Ak), is called the index ofA, denoted byind(A). If
ind(A) = 1, then there exists the unique matrixAg which satisfies the equa-
tions:

AAgA = A, AgAAg = Ag, AAg = AgA.

The matrixA is the group inverse ofA. Moreover,ind(A) = 0 if and only if A
is invertible, and ind this caseA−1 = Ag.

Definition 1.1. Let A ∈ Cm×n be of rankr, let T be a subspace ofCn of
dimensions ≤ r, and letS be a subspace ofCm of dimensionm − s. If a
matrixX ∈ Cn×m satisfies

XAX = X, R(X) = T, N (X) = S,

thenX is called the outer inverse or generalized inverse ofA, and the notation
X = A

(2)
T,S is common.
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The main characterization ofA(2)
T,S-generalized inverse is given as follows.

Lemma 1.6.Let A ∈ Cm×n be of rankr, let T be a subspace ofCn of di-
mensions ≤ r, and letS be a subspace ofCm of dimensionm − s. ThenA
has an outer inverseX such thatR(X) = T andN (X) = S if and only if

AT ⊕ S = Cm, and in this caseX = A
(2)
T,S is unique.

We also need the following results.

Lemma 1.7.LetA ∈ Cm×n be of rankr, let T be a subspace ofCn of dimen-
sions ≤ r, and letS be a subspace ofCm of dimensionm − s. In addition,
supposeG ∈ Cn×m such thatR(G) = T andN (G) = S. If A has an outer

inverseA(2)
T,S, thenind(AG) = ind(GA) = 1. Further, we have

A
(2)
T,S = (GA)gG = G(AG)g. (4)

Lemma 1.8. If A satisfies the conditions of Lemma1.7, then

rank(AG) = rank(GA) = rank(G).
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If A is square and invertible, then the condition number ofA is defined as
k(A) = ‖A‖ · ‖A−1‖, where‖ · ‖ is some matrix norm. The study of condition
numbers is important in the theory of stability of linear systems. IfA is rectan-
gular (or even square and singular), then we do not have the condition number
of A in the previous sense. But still, we have some generalized inverse ofA,
sayA−. Now, the ”generalized“ condition number ofA related toA− is defined
as‖A‖ · ‖A−‖. Generalized condition numbers have applications in studying
singular linear systems.
The following result is known as the Schur decomposition theorem.

Lemma 1.9.(Schur decomposition)If A ∈ Cn×n, then there exists an unitary
U ∈ Cn×n such that

U ∗AU = T = D + N

whereD = diag(λ1, . . . , λn) andN ∈ Cn×n is strictly upper triangular.
Furthermore,U can be chosen so that the eigenvaluesλi appear in any order
along the diagonal.
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Let (X, ρ) be a complete metric space. A mapT : X 7→ X such that for some
constantλ ∈ (0, 1) and for everyx, y ∈ X

d(Tx, Ty) ≤ λ · max
{

ρ(x, y), ρ(x, Tx), ρ(y, Ty), ρ(x, Ty), ρ(y, Tx)
}

(5)

is calledquasicontraction.
Let E be a real Banach space andP a subset ofE. P is called a cone if and
only if:

(i) P is closed, nonempty, andP 6= {0},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P =⇒ ax + by ∈ P

(iii) x ∈ P and−x ∈ P =⇒ x = 0.

Given a coneP ⊂ E, we define a partial ordering≤ with respect toP by
x ≤ y if and only if y− x ∈ P . We shall writex < y if x ≤ y andx 6= y; we
shall writex � y if y − x ∈ int P , where intP denotes the interior ofP .
The coneP is called normal if there is a numberK > 0 such that for all
x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.
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Definition 1.2. LetX be a nonempty set. Suppose the mappingd : X ×X 7→
E satisfies

(d1) 0 < d(x, y) for all x, y ∈ X andd(x, y) = 0 if and only ifx = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X ;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Thend is called a cone metric onX , and(X, d) is called a cone metric space.

ForF ⊂ E, we defineδ(F ) = sup{‖x‖ : x ∈ F}.

Let xn be a sequence inX , andx ∈ X . If for every c ∈ E with 0 � c
there isn0 ∈ N such that for alln > n0, d(xn, x) � c, thenxn is said to
be convergent, andxn converges tox, and we denote this bylimn xn = x, or
xn → x, (n → ∞). If for everyc ∈ E with 0 � c there isn0 ∈ N such that
for all n,m > n0, d(xn, xm) � c, thenxn is called a Cauchy sequence inX .
If every Cauchy sequence is convergent inX , thenX is called a complete cone
metric space.
Let us recall that ifP is a normal cone thenxn ∈ X converges tox ∈ X if and
only if d(xn, x) → 0, n → ∞. Further,xn ∈ X is a Cauchy sequence if and
only if d(xn, xm) → 0, n, m →∞.
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If E is a real Banach space with coneP and if a ≤ λa wherea ∈ P and
0 < λ < 1, thena = 0. The conditiona ≤ λa means thatλa − a ∈ P, i.e.,
− (1− λ) a ∈ P. Sincea ∈ P and1−λ > 0, then also(1− λ) a ∈ P. Thus
we have(1− λ) a ∈ P ∩ (−P ) = {0} , hencea = 0.
Let (X, d) be a cone metric space. Then:

If o ≤ x ≤ y, anda ≥ 0, then it is easy to prove that0 ≤ ax ≤ ay.

If 0 ≤ xn ≤ yn for eachn ∈ N, and limn xn = x, limn yn = y, then
0 ≤ x ≤ y.

In the next definition we define quasi contraction on cone metric space. Such a
mapping is a generalization ofĆirić’s quasi contraction.

Definition 1.3. Let (X, d) be a cone metric space. A mapf : X 7→ X such
that for some constantλ ∈ (0, 1) and for everyx, y ∈ X , there existsu ∈
C(f, x, y) ≡

{
d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

}
, such that

d(fx, fy) ≤ λ · u, (6)

is called quasi contraction.

If f : X 7→ X , andn ∈ N, we set

O(x; n) =
{

x, fx, f 2x, ..., fnx
}

, and O(x;∞) =
{

x, fx, f 2x, ...
}

.
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2. Reverse order law for the Moore-Penrose
inverse

If S is a semigroup with the unit1, and ifa, b ∈ S are invertible, then the equal-
ity (ab)−1 = b−1a−1 is called the reverse order law for the ordinary inverse. It
is well-known that the reverse order law does not hold for various classes of
generalized inverses.
In this section we present new results related to the reverse order law for the
Moore-Penrose inverse of operators on Hilbert spaces. Some finite dimensional
results are extended to infinite dimensional settings (Y. Tian,Using rank for-
mulas to characterize equalities for Moore-Penrose inverses of matrix products,
Appl. Math. Comput. 147 (2004), 581–600). The results of this section are
proved in the paper:

D.S. Djordjevíc, N.Č. Dinčić,Reverse order law for the Moore–Penrose inverse,
J. Math. Anal. Appl. 361 (1) (2010), 252-261.
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Theorem 2.1.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z) and
B ∈ L(X, Y ) be such thatA, B, AB have closed ranges. Then the following
statements are equivalent:

(a) ABB†A†AB = AB;

(b) B†A†ABB†A† = B†A†;

(c) A†ABB† = BB†A†A;

(d) A†ABB† is an idempotent;

(e) BB†A†A is an idempotent;

(f) B†(A†ABB†)†A† = B†A†;

(g) (A†ABB†)† = BB†A†A;
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Now we prove the following result.

Theorem 2.2.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z), B ∈
L(X, Y ) be such thatA, B, AB have closed ranges. Then the following state-
ments hold:

(a) AB(AB)† = ABB†A† ⇔ A∗AB = BB†A∗AB ⇔ R(A∗AB) ⊆
R(B) ⇔ B†A† ∈ (AB){1, 2, 3};

(b) (AB)†AB = B†A†AB ⇔ ABB∗ = ABB∗A†A ⇔ R(BB∗A∗) ⊆
R(A∗) ⇔ B†A† ∈ (AB){1, 2, 4};

(c) The following statements are equivalent:

(1) (AB)† = B†A†;

(2) AB(AB)† = ABB†A† and(AB)†AB = B†A†AB;

(3) A∗AB = BB†A∗AB andABB∗ = ABB∗A†A;

(4)R(A∗AB) ⊆ R(B) andR(BB∗A∗) ⊆ R(A∗).
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We also prove the following result.

Theorem 2.3.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z), B ∈
L(X, Y ) be such thatA, B, AB have closed ranges. Then we have:

(a) AB(AB)†A = ABB† ⇔ A∗ABB† = BB†A∗A ⇔ R(A∗AB) ⊆
R(B) ⇔ B†A† ∈ (AB){1, 2, 3};

(b) B(AB)†AB = A†AB ⇔ A†ABB∗ = BB∗A†A ⇔ R(BB∗A∗) ⊆
R(A∗) ⇔ B†A† ∈ (AB){1, 2, 4};

(c) The following three statements are equivalent:

(1) (AB)† = B†A†;

(2) AB(AB)†A = ABB† andB(AB)†AB = A†AB;

(3) A∗ABB† = BB†A∗A andA†ABB∗ = BB∗A†A.
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Theorem 2.4.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z), B ∈
L(X, Y ) be such thatA, B, AB have closed ranges. The following statements
hold.

(a) (ABB†)† = BB†A† ⇔ B†(ABB†)† = B†A† ⇔ R(A∗AB) ⊆ R(B).

(b) (A†AB)† = B†A†A ⇔ (A†AB)†A† = B†A† ⇔ R(BB∗A∗) ⊆ R(A∗).

(c) The following three statements are equivalent:

(1) (AB)† = B†A†;

(2) (ABB†)† = BB†A† and(A†AB)† = B†A†A;

(3) B†(ABB†)† = B†A† and(A†AB)†A† = B†A†.
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Theorem 2.5.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z), B ∈
L(X, Y ) be such thatA, B, AB have closed ranges. Then we have:

(a) B† = (AB)†A ⇔ R(B) = R(A∗AB).

(b) A† = B(AB)† ⇔ R(A∗) = R(BB∗A∗).

We need the following auxiliary result.

Lemma 2.1. Let X, Y be Hilbert spaces, letC ∈ L(X, Y ) have a closed
range, and letD ∈ L(Y ) be Hermitian and invertible. ThenR(DC) = R(C)
if and only if [D, CC†] = 0.

Theorem 2.6.Let X, Y, Z be Hilbert spaces, and letA ∈ L(Y, Z), B ∈
L(X, Y ) be such thatA, B, AB have closed ranges. Then we have:

(a) (AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB);

(b) (AB)† = B†(ABB†)† ⇔ R(B∗B(AB)∗) = R((AB)∗).
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3. The Drazin invertibility of the difference
and the sum of two idempotent operators

In this section some equivalents are established of the Drazin invertibility of dif-
ferences and sums of idempotent operators on a Hilbert space, using the spectral
theory of linear operators. The results of this section are presented in the paper:

D. S. Cvetkovíc-Ili ć and C. Y. Deng,The Drazin invertibility of the dif-
ference and the sum of two idempotent, J. Comput. Appl. Math.
doi:10.1016/j.cam.2009.09.028.

In the recent years, a number of researchers have considered questions concern-
ing the idempotents. The authors obtain results for the Drazin invertibility of
the sum and difference of the idempotents analogous to those of Koliha and
Rakǒcevíc (J. J. Koliha, V. Rakǒcevíc and I. Strakraba,The difference and sum
of projectors, Linear Algebra and its Applications, 388 (2004), 279-288; J. J.
Koliha and V. Rakǒcevíc, Invertibility of the sum of idempotents, Linear and
Multilinear Algebra 50 (2002), 285-292; J. J. Koliha and V. Rakočevíc, In-
vertibility of the difference of idempotents, Linear and Multilinear Algebra 51
(2003), 97-110) in the case of ordinary invertibility.
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The following theorem is a well-known result which we state for the sake of
completeness:

Theorem 3.1.Let P be an idempotent andQ be an orthogonal projection in
L(H). The following statements are equivalent:

(1) PQ is Drazin invertible,

(2) QP is Drazin invertible,

(3) PQP is Drazin invertible,

(4) QPQ is Drazin invertible,

(5) P ∗Q is Drazin invertible,

(6) QP ∗ is Drazin invertible,

(7) P ∗QP ∗ is Drazin invertible,

(8) QP ∗Q is Drazin invertible.
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If in Theorem3.1we replaceP andQ by I − P andI − Q, respectively, we
get the following results:

Corollary 3.1. Let P be an idempotent andQ be an orthogonal projection in
L(H). The following statements are equivalent:

(1) (I − P )(I −Q) is Drazin invertible,

(2) (I −Q)(I − P ) is Drazin invertible,

(3) (I − P )(I −Q)(I − P ) is Drazin invertible,

(4) (I −Q)(I − P )(I −Q) is Drazin invertible,

(5) (I − P )∗(I −Q) is Drazin invertible,

(6) (I −Q)(I − P )∗ is Drazin invertible,

(7) (I − P )∗(I −Q)(I − P )∗ is Drazin invertible,

(8) (I −Q)(I − P )∗(I −Q) is Drazin invertible.

Lemma 3.1.LetA, B ∈ L(H). ThenI − AB is Drazin invertible if and only
if I −BA is Drazin invertible.
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Let us remark that the analogue result as in the next theorem concerning or-
dinary invertibility is proved in Theorem 3.2 ( J. J. Koliha and V. Rakočevíc,
Invertibility of the difference of idempotents, Linear and Multilinear Algebra 51
(2003),).

Theorem 3.2.LetP, Q be idempotents inL(H). ThenP −Q is Drazin invert-
ible if and only ifI − PQ andP + Q− PQ are Drazin invertible.

Corollary 3.2. LetP, Q be idempotents inL(H). The following statements are
equivalent:
(1) I − PQ is Drazin invertible,

(2) P − PQ is Drazin invertible,

(3) I − PQP is Drazin invertible,

(4) P − PQP is Drazin invertible,

(5) I −QP is Drazin invertible,

(6) Q−QP is Drazin invertible,

(7) I −QPQ is Drazin invertible,

(8) Q−QPQ is Drazin invertible.
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As before, if in Corollary 3.4 we replaceP andQ by I − P and I − Q ,
respectively, we have the following result:

Corollary 3.3. Let P, Q be idempotents inL(H). The following statements
are equivalent:

(1) P + Q− PQ is Drazin invertible,

(2) Q− PQ is Drazin invertible,

(3) P + (I − P )Q− (I − P )QP is Drazin invertible,

(4) (I − P )Q(I − P ) is Drazin invertible,

(5) P + Q−QP is Drazin invertible,

(6) P −QP is Drazin invertible,

(7) Q + (I −Q)P − (I −Q)PQ is Drazin invertible,

(8) (I −Q)P (I −Q) is Drazin invertible.

Corollary 3.4. (1) Let P andQ be orthogonal projections inL(H). Then the
conditions in Theorem 3.3, Corollary3.2 and Corollary3.3 are all equivalent
to the fact thatP + Q is Drazin invertible.

(2) LetP, Q ∈ L(H) be idempotents. ThenP −Q is Drazin invertible if and
only if one of the conditions from the Corollary3.2 and one of the conditions
from the Corollary3.3hold.
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Lemma 3.2.LetP ∈ L(H) be an idempotent andQ ∈ L(H) be an orthogo-
nal projection. ThenP andQ have the following operator matrices

P =


I P14 P15 P16

I P24 P25 P26
I P34 P35 P36

0
0

0

 , (7)

Q =



I
0

Q1 Q
1
2
1(I −Q1)

1
2D

D∗Q
1
2
1(I −Q1)

1
2 D∗(I −Q1)D

0
I

 (8)

with respect to the space decompositionH =
∑6

i=1 Hi, wherePij is an oper-
ator fromHj into Hi, 1 ≤ i ≤ 3, 4 ≤ j ≤ 6, Q1 is a positive contraction
onH3, 0 and1 are not the eigenvalues ofQ1, D is a unitary operator fromH4
ontoH3 and the entries omitted in the formula(7) and(8) are zero.
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4. Condition number related to the outer in-
verse of a complex matrix

In this section we obtain the formula for computing the condition number of
a complex matrix, which is related to the outer generalized inverse of a given
matrix. We use the Schur decomposition of a matrix. This results are proved in
the paper

D. Mosić, D.S. Djordjevíc, Condition number related to the outer inverse of a
complex matrix, Appl. Math. Comput. doi:10.1016/j.amc.2009.09.023.

These results generalize some early work (H. Diao, M. Qin, Y. Wei,Condition
numbers for the outer inverse and constrained singular linear system, Appl.
Math. Comput. 174 (2006) 588–612; Y. Wei, N. Zhang,Condition number with
generalized inverseA(2)

T,S and constrained linear systems, J. Comput. Appl.
Math. 157 (2003) 57–72.), because of the well-posed properties of the Schur
decomposition. Some results are established for the condition number of the
generalized inverse and the generalized inverse solution of a linear system, us-
ing a special norm calledPQ-norm which depends on the Jordan canonical
form of A. The computation of the Jordan canonical form is an ill-posed prob-
lem.
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Let A ∈ Cn×n satisfies the following condition:

rank(Ak) = r, ind(A) = k, R(Ak) = R(Ak∗). (9)

We prove the following result.

Theorem 4.1.Let A, G, T and S be the same as in Lemma1.7, p =
rank(AG),R(AG) = R((AG)∗) andR(GA) = R((GA)∗). Then we have

A = V

[
A1 0
0 A2

]
U ∗, G = U

[
G1 0
0 0

]
V ∗

A
(2)
T,S = U

[
A−1

1 0
0 0

]
V ∗, (10)

whereU andV are unitary matrices,A1 andG1 are nonsingular matrices.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

In this section we consider the following linear system

Ax = b, x ∈ T,

whereA ∈ Cm×n, b ∈ Cm. The generalizedA(2)
T,S-inverse solutionx has the

form
x = A

(2)
T,Sb.

If F is a continuously differentiable functionF : Cm×n × Cm −→
Cn, (A, x) 7−→ F (A, x), then the absolute condition number ofF at x is
the scalar‖F ′(x)‖. The relative condition ofF atx is ‖F ′(x)‖‖x‖

‖y‖ .
The following operator:

F : Cm×n × Cm −→ Cn

(A, b) 7−→ F (A, b) = A
(2)
T,Sb = x

is differentiable function, if the perturbationE in A fulfils the following condi-
tion:

R(E) ⊆ AT, R(E∗) ⊆ A∗S>. (11)

It is easy to verify that (11) is equivalent to

AA
(2)
T,SE = E, EA

(2)
T,SA = E. (12)
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We get the explicit formula for the condition number of the generalizedA
(2)
T,S-

inverse solution by means of the 2-norm and Frobenius norm.

Theorem 4.2.Let A, G, T and S be the same as in Lemma1.7, p =
rank(AG), R(AG) = R((AG)∗) andR(GA) = R((GA)∗). If the per-
turbationE in A fulfills the condition(11), then the absolute condition number

of the generalizedA(2)
T,S-inverse solution of a linear system, with the norm

‖[αA, βb]‖(F )
U,Q =

√
α2‖A‖2

F + β2‖b‖2
2

on the data(A, b), and the norm‖x‖2 on the solution, is given by

C = ‖A(2)
T,S‖2

√
1

β2
+
‖x‖2

2

α2
,

whereQ =

[
U 0
0 1

]
andU is the same matrix as in(10).
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If E satisfies the condition(11), then the 2-norm relative condition number of
the generalized inverseA(2)

T,S is defined as

Cond(A) = lim
ε→0+

sup
‖E‖2≤ε‖A‖2

‖(A + E)
(2)
T,S − A

(2)
T,S‖2

ε‖A(2)
T,S‖2

and the corresponding condition number for the linear systemsAx = b is de-
fined as

Cond(A, b) = lim
ε→0+

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

‖(A + E)
(2)
T,S(b + f )− A

(2)
T,Sb‖2

ε‖A(2)
T,Sb‖2

.

The level-2 condition number of the generalizedA
(2)
T,S-inverse is defined as

Cond[2](A) = lim
ε→0

sup
‖E‖2≤ε‖A‖2

|Cond(A + E)− Cond(A)|
εCond(A)

and the level-2 corresponding condition number is defined as

Cond[2](A, b) = lim
ε→0

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

|Cond(A + E, b + f )− Cond(A, b)|
εCond(A, b)

.
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First, we proved the following lemmas.

Lemma 4.1.For û, v̂ in Theorem 2.1, there existsS ∈ Cm×n such that

Sv̂ = −û, ‖S‖2 = 1,

whereS fulfills condition(11).

Lemma 4.2.LetA, G, T andS be the same as in Lemma1.7, p = rank(AG),
R(AG) = R((AG)∗) andR(GA) = R((GA)∗). If ε → 0, then

max
‖E‖2≤ε‖A‖2

∣∣∣‖(A + E)
(2)
T,S‖2 − ‖A(2)

T,S‖2

∣∣∣ = ε‖A(2)
T,S‖2Cond(A) +O(ε2),

provided thatE fulfills the condition(11).
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The following results show that for the generalizedA
(2)
T,S-inverse for solving a

linear system, the sensitivity of the condition number is approximately given by
the condition number itself.

Corollary 4.1. Let A, G, T and S be the same as in Lemma1.7, p =
rank(AG), R(AG) = R((AG)∗) andR(GA) = R((GA)∗). If the per-
turbationE in A fulfills the condition(11), then the level-2 condition number

Cond[2](A) = lim
ε→0

sup
‖E‖2≤ε‖A‖2

|Cond(A + E)− Cond(A)|
εCond(A)

(13)

satisfies
|Cond[2](A)− Cond(A)| ≤ 1. (14)
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Corollary 4.2. Let A, G, T and S be the same as in Lemma1.7, p =
rank(AG), R(AG) = R((AG)∗) andR(GA) = R((GA)∗). If the per-
turbationE in A fulfills the condition(11), then the level-2 condition number
of linear systemsAx = b, x ∈ T ,

Cond[2](A, b) = lim
ε→0

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

|Cond(A + E, b + f )− Cond(A, b)|
εCond(A, b)

(15)

satisfies

Cond(A, b)

(1 + ζ)2
− 1

1 + ζ
≤ Cond[2](A, b) ≤ 3Cond(A, b) + 2, (16)

whereζ = ‖b‖2

‖AA
(2)
T,Sb‖2

.
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Now we present a structured perturbation of the generalized inverseA
(2)
T,S by

means of 2–norm. The notation|A| ≤ |B| means that|ai,j| ≤ |bi,j| for A =
(ai,j) andB = (bi,j).

Theorem 4.3.Let A, G, T and S be the same as in Lemma1.7, p =
rank(AG),R(AG) = R((AG)∗) andR(GA) = R((GA)∗). If |V ∗EU | ≤
|V ∗AU | and‖A(2)

T,SE‖2 < 1, then

(A + E)
(2)
T,S = (I + A

(2)
T,SE)−1A

(2)
T,S,

whereU andV are the same matrices as in(10).
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5. Quasi-contraction on cone metric space
In this section we define and study quasi contraction on cone metric space. For
such a mapping we prove a fixed point theorem. This results are presented in
the paper

D. Ili ć, V. Rakǒcevíc, Quasi-contraction on cone metric space, Applied Mathe-
matics Letters, 22 (2009) 728-731.

Among other things, the authors generalize recent result of H. L. Guang and Z.
Xian, Cone metric spaces and fixed point theorems of contractive mappings, J.
Math. Anal. Appl332 (2007), 1468–1476, and the main result of Lj. B.Ćirić,
A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc.,45
(1974), 267–273, is also recovered.
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We start with the next auxiliary result.

Lemma 5.1.Let (X, d) be a cone metric space andP be a normal cone, Let
f : X 7→ X be a quasi contraction. Then, there existsn0 ∈ N such that for
everyn > n0,

δ(O(x; n)) = max
{∥∥∥d(x, f lx)

∥∥∥,
∥∥∥d(f ix, f jx)

∥∥∥ : 1 ≤ l ≤ n, 1 ≤ i, j ≤ n0

}
(17)

and

δ(O(x,∞)) ≤ max
{ K

1−K2λn0

∥∥∥d(x, fn0+1x)
∥∥∥, λKδ(O(x; n0)),∥∥∥d(x, f lx)

∥∥∥ : 1 ≤ l ≤ n0

}
.

(18)

Theorem 5.1.Let (X, d) be a complete cone metric space andP be a normal
cone. Suppose the mappingf : X 7→ X is a quasi contraction. Thenf
has a unique fixed point inX and for anyx ∈ X , iterative sequence{fnx}
converges to the fixed point.
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Now, as a corollary, we get the main result of Guang and Z. Xian (Cone metric
spaces and fixed point theorems of contractive mappings,J. Math. Anal. Appl
332(2007), 1468–1476).

Corollary 5.1. Let (X, d) be a complete cone metric space andP be a normal
cone with normal constantK. Suppose the mappingf : X 7→ X satisfies the
contractive condition

d(fx, fy) ≤ λd(x, y), for all x, y ∈ X (19)

whereλ ∈ [0, 1) is constant. Thenf has a unique fixed point inX and for any
x ∈ X , iterative sequence{fnx} converges to the fixed point.

Let us remark that in Theorem 2.1, settingE = R, P = [0,∞), ‖x‖ =
|x|, x ∈ E, we get the well-knoẃCirić’s result (A generalization of Banach’s
contraction principle,Proc. Amer. Math. Soc.,45 (1974), 267–273) for quasi-
contraction.
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