
 1

 Reducing the time-cost of
algorithms

 Monica TATARAM.
 Computer Science Dept.,

Faculty of Mathematics and Computer Science,
 University of Bucharest,

 14, Academiei Str., Bucharest – 010014, ROMANIA
 http://fmi.unibuc.ro/ro/catedre/funinf/tataram_monica/

 2

Reducing the time-cost of algorithms

The aim of this contribution:
to present a few techniques1 that can be employed for
reducing the time complexity of one of the most "famous"
NP-complete optimization problems:

the knapsack problem

1) i.e., combinations of some well-known algorithms'

design methods with various new approaches and
ideas (pseudo-polynomial time algorithms,
approximation and randomization of algorithms etc.).

 3

Reducing the time-cost of algorithms

 Basic notions and notations
 The knapsack problem

 4

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 1.
Let Σ be any alphabet; an optimization problem is a 7-tuple

 U= (ΣI, ΣO,L,LI,F,cost,goal), where:
ΣI and ΣO are two alphabets, called respectively the input and

the output alphabet of U;
L ⊆ ΣI* is the language of feasible problem instances;
LI ⊆ Σ* is the language of the (actual) problem instances of U;
 F : L → P (ΣO*) defined by: ∀ x ∈ L, F(x) consists of the all

feasible solutions for x;
cost : F(x) x L → R+ is a function that assigns to each feasible

solution u ∈ F(x) of the actual problem instance x its
cost, cost (u,x);

goal ∈ {minimum, maximum}

 5

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 2.
NPO is the class of optimization problems

U=(ΣI, ΣO, L, LI, F, cost, goal) having the following properties :
(i) LI ∈ P,
(ii) there exists a polynomial pU such that

(a) for every x ∈ LI, and every y ∈ F(x), |y| ≤ pU(|x|), and
(b) there exists a polynomial-time algorithm that, for every y∈ΣO*
and every x∈LI such that |y| ≤ pU(|x|), decides whether y∈F(x),

(iii) the function cost is computable in polynomial time.

PO is the class of optimization problems
U=(ΣI, ΣO, L, LI, F, cost, goal) such that:

(i) U ∈ NPO,
(ii) there is a polynomial-time algorithm that, for every x∈LI,

computes an optimal solution for x.

 6

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 3.

Let U be an integer-valued problem (that is a problem whose inputs
are taken out of the set of integer numbers and coded as words x
over the alphabet {0,1,#}) such that

 x=x1#x2#...#xn, xi ∈ {0,1}* for every 1≤ i≤ n, is interpreted as a
vector of integers Int(x)=(Number(x1),Number(x2),…,Number(xn)),
where Number(α) is the decimal representation of the binary
number α).

An algorithm A that solves U is called a pseudo-polynomial-
time algorithm for U if there exists a polynomial p of two
variables such that, for every instance x of U:

 TimeA(x) = O(p(|x|, Max-Int(x)))

where Max-Int(x) = max {Number(xi) | i=1,2,…,n}.

 7

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 4.

Let U be an integer-valued problem, and let h be a
nondecreasing function from N to N.

The h-value-bounded subproblem of U, denoted by
Value(h)-U, is the problem obtained from U by restricting the
set of all input instances of U to the set of input instances x
with Max-Int(x)≤ h(|x|).

 8

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Theorem 1. (see [Hromkovic, 2004])

Let U be an integer-valued problem, and let A be a pseudo-
polynomial-time algorithm for U.

Then, for every polynomial h, there exists a polynomial-time
algorithm for Value(h)-U

(i.e., if U is a decision problem then Value(h)-U ∈ P, and if U is an
optimization problem then Value(h)-U ∈ PO).

 9

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 5.
Let U=(ΣI, ΣO, L, LI, F, cost, goal) be an optimization problem, and

let A be a consistent algorithm for U. For every x ∈ LI, the relative
error ε A(x) of A on x is defined as

For any n∈N, the relative error of A is defined as
ε A(n) = max {εA(x) | x∈LI ∩ (ΣI)n}.

For every x ∈ LI, the approximation ratio RA(x) of A on x is
defined as

)(

)())((cos
)(

xUOpt

xUOptxAt
xA

−
=ε

=
))((cos

)(
,

)(

))((cos
max)(

XAt

xUOpt

xUOpt

XAt
xAR

 10

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 5 (cont.).

For any n∈N, the approximation ratio of A is defined as

RA(n)=max{RA(x)|x∈LI∩(ΣI)n}.

For any positive real δ>1, A is a δ -approximation algorithm
for U if RA(x) ≤ δ , for every x∈LI.

For every function f : N →R+, we say that A is an f(n)-
approximation algorithm for U if RA(n) ≤ f(n) for every
n∈N.

 11

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Definition 6.

Let U=(ΣI, ΣO, L, LI, F, cost, goal) be an optimization problem.

An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (x,ε)∈LI x R+, A
computes a feasible solution A(x) with a relative error at most
 ε , and TimeA (x, ε -1) can be bounded by a function that is
polynomial in Ixl.

 12

Reducing the time-cost of algorithms

 Basic notions and notations
 The knapsack problem

 13

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Simple Knapsack Problem (SKP)

Input: b,n∈ N, w1,w2,…,wn∈N\{0};

Constraints: F(b, w1,w2,…,wn) = {T ⊆ {1, ... , n} I Σ i∈ T wi ≤ b};

Costs: ∀ T∈F(b,w1,w2,…,wn): cost(T,b,w1,w2,…,wn)=Σ i∈ T wi;

Goal: maximum.

This problem has a very useful quality: on one hand, we can partition
the set of its instances into several large subclasses of easy
instances, leaving the hard instance (instances) into a separate
class; on the other hand, the problem instances appearing in
specific applications generally belong to the subclasses of easy
problem instances.

 14

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Knapsack Problem (KP)

Input: b,n∈ N, w1,w2,…,wn,c1,c2,…,cn ∈N\{0};

Constraints: F(b,w1,w2,…,wn,c1,c2,…,cn) =
 ={T ⊆ {1, ... , n} I Σ i∈ T wi ≤ b};

Costs: ∀ T∈F(b, w1,w2,…,wn,c1,c2,…,cn):

 cost(T,b,w1,w2,…,wn,c1,c2,…,cn)=Σi∈ T ci;

Goal: maximum.

 15

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Any solution to an input instance I=(w1,w2,…,wn,c1,c2,…,cn,b)
of KP can be represented as a set T ⊆ {1,2, ...,n} of
indices such that Σ i∈ T wi ≤ b.

The KP can be solved by the method of dynamic programming.

According to the philosophy of this method, one may consider
only the problem subinstances

Ii=(w1,w2,…,wi,c1,c2,…,ci,b), ∀ i=1,2,...,n (and not all 2n problem
subinstances) of a problem instance I=(w1,w2,…,wn,c1,c2,
…,cn,b).

 16

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Looking for that small subset of input subinstances whose
solutions suffice in order to efficiently produce a solution for
the given problem instance, we will compute, for every Ii,
i=1,2,...,n, and every integer k ∈ {0,1,2,..., Σ 1≤ j≤ n cj }, the
following triple (if it exists):

Also, Wi,k≤ b is the minimal weight with which the profit k can be
obtained for the input instance Ii, while Ti,k ⊆ {1,2,…,i} is a
set of indices that provides that profit k under the weight Wi,k.

∑
∈

=∑
∈

=

××

∑
=

∈

kiTj
kiWjw

kiTj
andkjcwhere

iPotb
i

j
jckiTkiWk

,

.,
,

}),,...,1({},...,2,1,0{
1

,...,2,1,0),,,,(

 17

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

For every 1≤ i≤ n and every Ii, the set of all triples produced
for Ii will be denoted by Triplei.

Let us notice that |Triplei| represents the number of
achievable profits of Ii and that it is at most equal to
Σ1≤ j≤ icj + 1.

Computing the set TRIPLEn for the original input instance
I = In provides an optimal solution to I.

The optimal cost OptKP(I) is the maximal achievable profit
appearing in TRIPLEn and the corresponding Tn,OptKP(I) is
an optimal solution. The main point is that one can
compute TRIPLEi+1 from TRIPLEi in time O(|TRIPLEi|).

 18

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

First, one computes

SETi+1:=TRIPLEi∪ { (k+ci+1,Wi,k+wi+1,Ti,k ∪ {i+1}) |

(k,Wi,k,Ti,k)∈TRIPLEi and Wi,k+wi+1≤ b }

by taking the original set and adding the (i+1)th object to the
knapsack of every triple if possible.

In this way, one can get several different triples with the same
profit.

We put into TRIPLEi+1 exactly one triple from SETi+1 for every
achievable profit k by choosing a triple that achieves the
profit k with minimal weight.

It does not matter which triple is chosen from SETl+i if several
triples have the same profit k and the same weight.

 19

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Algorithm DPKP (see [Hromkovic, 2004])
Input: I=(w1,w2,…,wn,c1,c2,…,cn,b) ∈ (IN \ {0})2n+1, n ∈ (IN \ {0}).
Step 1: TRIPLE(1):={(0,0,∅)} ∪ {(c1,w1,{1}) | if w1 ≤ b}.
Step 2: for i:=1 to n-1 do

 begin SET(i+1):=TRIPLE(i);
 for every (k,w,T) ∈ TRIPLE(i) do

 if w+wi+1≤ b then
 SET(i+1):=SET(i+1)∪{(k+ci+1,w+wi+1,T∪{i+1})};

 Set TRIPLE(i + 1) as a subset of SET(i + 1) containing exactly
one triple (m, wi,Ti) for every achievable profit m in SET(i + 1) by
choosing a triple with the minimal weight for the given m

 end
Step 3: Compute c:= max {k∈{1,…,∑1≤ i≤ n ci} | ∃ w,T: (k,w,T) ∈ TRIPLE(n)}
Output: The index set T such that (c,w,T)∈TRIPLE(n).

 20

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Theorem 2. (see [Hromkovic, 2004])
For every input instance I of KP,

TimeDPKP(I) ∈ O (|I|2 • Max-Int(I)),
i.e., DPKP is a pseudo-polynomial-time algorithm for KP.

 21

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

For every input instance w1,w2,...,wn, b of SKP, and every
T⊆{1,..., n}: cost(T)=Σi∈Twi.If cost(T) ≤ b, then T is a
feasible solution in F(w1,w2,...,wn,b).

First, we observe that the simple greedy algorithm for SKP is
already a δ -approximation algorithm for SKP with δ=2.

 22

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Algorithm 2ASKP (see [Hromkovic, 2004])

Input: Positive integers w1,w2,...,wn, b for some n∈N.

Step 1: Sort w1,w2,...,wn.

 For simplicity we may assume w1 ≥ w2 ≥ ... ≥ wn.

Step 2: T := ∅; cost(T) := 0;

Step 3: for i := 1 to n do

 if cost(T) + wi ≤ b then begin T := T ∪ {i};

 cost(T) := cost(T)+wi end;

Output: T.

This algorithm works in time O(n log n) because its three steps
take respectively O(n log n), O(1), and O(n) time.

 23

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Lema 1 (see [Hromkovic, 2004])

Algorithm 2ASKP is a 2-approximation algorithm for SKP.

To prove this one should notice that for every integer 1 ≤ j ≤ n-1.

wj+1 ≤ wj ≤ ((w1+w2+…+wj) / j) ≤ (b / j). (*)

The inequality (*) is the kernel of the design idea of the following
PTAS for SKP.

 24

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Algorithm PTASSKP (see [Hrom, 2004])

Input: Positive integers w1,w2,...,wn, b for some n∈N and a positive
real number ε , 0 < ε < 1.

Step 1: Sort w1,w2,...,wn.

 For simplicity we may assume b ≥ w1 ≥ w2 ≥ ... ≥ wn.

Step 2: k:= 1/ε
Step 3: For every set S ⊆ {1,2,…,n} with |S| ≤ k and Σ i∈S wi ≤ b, extend

S to S* by using the greedy approach described in Step 3 of
Algorithm 2ASKP.

{The sets S are created sequentially in the lexicographical order by
backtracking, and the up-till-now best S* is always saved.}

Output: A set S* with the maximal cost(S*) among all sets created in
Step3..

 25

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

Theorem 3 (see [Hromkovic, 2004])

Algorithm PTASSKP is a PTAS for SKP.

 26

Reducing the time-cost of algorithms
* Basic notions and notations

** The knapsack problem

References
[Hrom] Juraj HROMKOVIČ: Introduction to Automata,

Algorithmics, Randomization, Communication, and
Cryptography, Springer Verlag, Berlin, 2004.

[Joh, Scha] Richard JOHNSONBAUGH, Marcus SCHAEFER:
Algorithms, Pearson Prentice Hall, Upper Saddle River, NJ.,
2004.

[Mar, Toth] Silvano MARTELLO, Paolo TOTH: Knapsack
Problems, Algorithms and Computer Implementations; John
Wiley & Sons, New York, 1990.

[Pap] Christos H. PAPADIMITRIOU: Computational Complexity,
Addison-Wesley Publ. Co., Reading Mass., 1994.

[Sip] Michael SIPSER: Introduction to the Theory of Computation,
PWS Publ. Co. – International Thomson Publ. Inc., Boston,
Ma., 1997.

	 Reducing the time-cost of algorithms
	Reducing the time-cost of algorithms
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

