
 1

 Reducing the time-cost of 
algorithms 

   Monica TATARAM.
                    Computer Science Dept., 

Faculty of Mathematics and Computer Science,
          University of Bucharest,

          14, Academiei Str., Bucharest – 010014, ROMANIA 
           http://fmi.unibuc.ro/ro/catedre/funinf/tataram_monica/



 2

Reducing the time-cost of algorithms

The aim of this contribution:
to present a few techniques1  that can be employed for 
reducing the time complexity of one of the most "famous" 
NP-complete optimization problems: 

the knapsack problem
____________________
1)  i.e., combinations of some well-known algorithms' 

design methods with various new approaches and 
ideas (pseudo-polynomial time algorithms, 
approximation and randomization of algorithms etc.).
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Definition 1. 
Let Σ be any alphabet; an optimization problem is a 7-tuple   

                U= (ΣI, ΣO,L,LI,F,cost,goal), where:
ΣI and ΣO are two alphabets, called respectively the input and 

the output alphabet of U;
L ⊆ ΣI* is the language of feasible problem instances;
LI ⊆ Σ* is the language of the (actual) problem instances of U;
 F : L → P (ΣO*) defined by: ∀ x ∈ L, F(x) consists of the all 

feasible solutions for x;
cost : F(x) x L → R+ is a function that assigns to each feasible 

solution u ∈ F(x) of the actual problem instance  x  its 
cost, cost (u,x);

goal ∈ {minimum, maximum}
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Definition 2.
NPO is the class of optimization problems                                  

U=(ΣI, ΣO, L, LI, F, cost, goal) having the following properties :
(i)   LI ∈ P,
(ii)  there exists a polynomial  pU   such that

(a) for every  x ∈ LI,  and every  y ∈ F(x),  |y| ≤   pU(|x|), and
(b) there exists a polynomial-time algorithm that, for every  y∈ΣO*  
and every  x∈LI such that  |y| ≤  pU(|x|), decides whether  y∈F(x), 

(iii)  the function cost is computable in polynomial time.

PO is the class of optimization problems                                     
U=(ΣI, ΣO, L, LI, F, cost, goal)  such that:

(i)  U ∈ NPO, 
(ii) there is a polynomial-time algorithm that, for every  x∈LI,  

computes an optimal solution for  x.
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Definition 3. 

Let U be an integer-valued problem (that is a problem whose inputs 
are taken out of the set of integer numbers and coded as words x 
over the alphabet {0,1,#}) such that 

  x=x1#x2#...#xn, xi ∈ {0,1}* for every 1≤ i≤ n, is interpreted as a 
vector of integers Int(x)=(Number(x1),Number(x2),…,Number(xn)), 
where Number(α) is the decimal representation of the binary 
number α). 

An algorithm  A  that solves  U  is called a pseudo-polynomial-
time algorithm for  U  if there exists a polynomial p of two 
variables such that, for every instance x of U:

      TimeA(x) = O(p(|x|, Max-Int(x))) 

where  Max-Int(x) = max {Number(xi) | i=1,2,…,n}.
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Definition 4. 

Let U be an integer-valued problem, and let h be a 
nondecreasing function from N to N. 

The h-value-bounded subproblem of U, denoted by 
Value(h)-U, is the problem obtained from U by restricting the 
set of all input instances of U to the set of input instances  x  
with  Max-Int(x)≤ h(|x|).
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Theorem 1. (see [Hromkovic, 2004])

Let U be an integer-valued problem, and let A be a pseudo-
polynomial-time algorithm for U. 

Then, for every polynomial h, there exists a polynomial-time 
algorithm for Value(h)-U 

(i.e., if  U  is a decision problem then  Value(h)-U ∈ P, and if  U  is an 
optimization problem then  Value(h)-U ∈ PO).
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Definition 5.
Let  U=(ΣI, ΣO, L, LI, F, cost, goal)  be an optimization problem, and 

let A be a consistent algorithm for  U. For every x ∈ LI, the relative 
error  ε A(x)  of A on x is defined as

For any  n∈N, the relative error of A  is defined as   
ε  A(n) = max {εA(x) | x∈LI ∩ (ΣI)n}.

For every x ∈ LI,  the approximation ratio RA(x) of A on x is 
defined as 
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Definition 5 (cont.).

For any n∈N, the approximation ratio of A is defined as

RA(n)=max{RA(x)|x∈LI∩(ΣI)n}.

For any positive real δ>1, A is a δ -approximation algorithm 
for U if RA(x) ≤  δ , for every x∈LI.

For every function f : N →R+, we say that A is an f(n)-
approximation algorithm for U if RA(n) ≤  f(n) for every 
n∈N. 
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Definition 6.

Let U=(ΣI, ΣO, L, LI, F, cost, goal) be an optimization problem. 

An algorithm A  is called a polynomial-time approximation 
scheme (PTAS) for U, if, for every input pair (x,ε )∈LI x R+, A 
computes a feasible solution A(x) with a relative error at most 
 ε ,  and  TimeA (x, ε -1)  can be bounded by a function that is 
polynomial in  Ixl.
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Simple Knapsack Problem (SKP) 

Input:        b,n∈ N, w1,w2,…,wn∈N\{0}; 

Constraints: F(b, w1,w2,…,wn) = {T ⊆ {1, ... , n} I Σ i∈ T wi ≤  b}; 

Costs:       ∀ T∈F(b,w1,w2,…,wn): cost(T,b,w1,w2,…,wn)=Σ i∈ T wi;

Goal: maximum. 

This problem has a very useful quality: on one hand, we can partition 
the set of its instances into several large subclasses of easy 
instances, leaving the hard instance (instances) into a separate 
class; on the other hand, the problem instances appearing in 
specific applications generally belong to the subclasses of easy 
problem instances. 
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Knapsack Problem (KP) 

Input:          b,n∈ N, w1,w2,…,wn,c1,c2,…,cn ∈N\{0}; 

Constraints: F(b,w1,w2,…,wn,c1,c2,…,cn) =                                   
            ={T ⊆ {1, ... , n} I Σ i∈ T wi ≤  b}; 

Costs:          ∀ T∈F(b, w1,w2,…,wn,c1,c2,…,cn): 

                       cost(T,b,w1,w2,…,wn,c1,c2,…,cn)=Σi∈ T ci;

Goal:          maximum. 
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Any solution to an input instance  I=(w1,w2,…,wn,c1,c2,…,cn,b)  
of KP can be represented as a set  T ⊆ {1,2, ...,n}  of 
indices such that  Σ i∈ T wi ≤  b.  

The KP can be solved by the method of dynamic programming. 

According to the philosophy of this method, one may consider 
only the problem subinstances 

Ii=(w1,w2,…,wi,c1,c2,…,ci,b), ∀ i=1,2,...,n (and not all 2n problem 
subinstances) of a problem instance I=(w1,w2,…,wn,c1,c2,
…,cn,b). 
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Looking for that small subset of input subinstances whose 
solutions suffice in order to efficiently produce a solution for 
the given problem instance, we will compute, for every  Ii, 
i=1,2,...,n,  and every integer  k ∈   {0,1,2,..., Σ  1≤ j≤ n  cj  },  the 
following triple (if it exists):

Also,  Wi,k≤ b is  the minimal weight with which the profit  k  can be 
obtained for the input instance  Ii,  while  Ti,k  ⊆  {1,2,…,i}  is a 
set of indices that provides that profit k  under the weight  Wi,k. 
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For every 1≤ i≤ n and every Ii, the set of all triples produced 
for Ii  will be denoted by Triplei. 

Let us notice that |Triplei| represents the number of 
achievable profits of Ii and that it is at most equal to 
Σ1≤ j≤ icj + 1.

Computing the set TRIPLEn for the original input instance       
I = In provides an optimal solution to I. 

The optimal cost OptKP(I) is the maximal achievable profit 
appearing in TRIPLEn and the corresponding Tn,OptKP(I) is 
an optimal solution. The main point is that one can 
compute  TRIPLEi+1  from  TRIPLEi  in time  O(|TRIPLEi|). 
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First, one computes

SETi+1:=TRIPLEi∪ { (k+ci+1,Wi,k+wi+1,Ti,k ∪ {i+1}) |

(k,Wi,k,Ti,k)∈TRIPLEi  and Wi,k+wi+1≤ b }

by taking the original set and adding the  (i+1)th  object to the 
knapsack of every triple if possible. 

In this way, one can get several different triples with the same 
profit. 

We put into  TRIPLEi+1  exactly one triple from  SETi+1  for every 
achievable profit  k  by choosing a triple that achieves the 
profit k with minimal weight. 

It does not matter which triple is chosen from  SETl+i  if several 
triples have the same profit  k  and the same weight.
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Algorithm DPKP (see [Hromkovic, 2004])
Input: I=(w1,w2,…,wn,c1,c2,…,cn,b) ∈ (IN \ {0})2n+1, n ∈ (IN \ {0}).
Step 1: TRIPLE(1):={(0,0,∅)} ∪ {(c1,w1,{1}) | if w1 ≤  b}.
Step 2: for  i:=1  to  n-1  do

  begin  SET(i+1):=TRIPLE(i);
                        for every (k,w,T) ∈ TRIPLE(i)  do

           if  w+wi+1≤ b then
             SET(i+1):=SET(i+1)∪{(k+ci+1,w+wi+1,T∪{i+1})};

         Set  TRIPLE(i + 1)  as a subset of  SET(i + 1)  containing exactly 
one triple  (m, wi,Ti )  for every achievable profit  m  in  SET(i + 1)  by 
choosing a triple with the minimal weight for the given  m 

  end
Step 3: Compute c:= max {k∈{1,…,∑1≤ i≤ n ci} | ∃  w,T: (k,w,T) ∈ TRIPLE(n)}
Output: The index set  T  such that  (c,w,T)∈TRIPLE(n).
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Theorem 2. (see [Hromkovic, 2004])
For every input instance  I  of  KP,

TimeDPKP(I) ∈ O (|I|2 • Max-Int(I)), 
i.e., DPKP is a pseudo-polynomial-time algorithm for KP.
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For every input instance w1,w2,...,wn, b of SKP, and every 
T⊆{1,..., n}: cost(T)=Σi∈Twi.If  cost(T) ≤  b, then T is a 
feasible solution in F(w1,w2,...,wn,b). 

First, we observe that the simple greedy algorithm for SKP is 
already a δ -approximation algorithm for SKP with δ=2.
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Algorithm 2ASKP (see [Hromkovic, 2004])

Input:   Positive integers  w1,w2,...,wn, b  for some n∈N.

Step 1:  Sort  w1,w2,...,wn.  

  For simplicity we may assume w1 ≥  w2 ≥  ... ≥ wn.

Step 2:  T := ∅; cost(T) := 0;

Step 3:  for i := 1 to  n  do

         if cost(T) + wi ≤  b  then begin T := T ∪ {i};

    cost(T) := cost(T)+wi  end; 

Output:  T.

This algorithm works in time O(n log n) because its three steps 
take respectively O(n log n), O(1), and O(n) time.
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Lema 1 (see [Hromkovic, 2004])

Algorithm 2ASKP is a 2-approximation algorithm for SKP.

To prove this one should notice that for every integer 1 ≤  j ≤  n-1.

wj+1 ≤  wj ≤  ((w1+w2+…+wj) / j) ≤  (b / j).                             (*)

The inequality (*) is the kernel of the design idea of the following 
PTAS for SKP. 
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Algorithm PTASSKP (see [Hrom, 2004])

Input: Positive integers  w1,w2,...,wn, b  for some n∈N  and a positive 
real number  ε , 0 < ε  < 1.

Step 1: Sort  w1,w2,...,wn.  

            For simplicity we may assume b ≥   w1 ≥   w2 ≥  ... ≥  wn.

Step 2: k:=  1/ε
Step 3: For every set  S ⊆  {1,2,…,n}  with |S| ≤  k and Σ i∈S wi ≤  b,  extend  

S  to  S*  by using the greedy approach described in Step 3 of 
Algorithm 2ASKP.

{The sets S  are created sequentially in the lexicographical order by 
backtracking, and the up-till-now best  S*  is always saved.}

Output: A set  S*  with the maximal cost(S*) among all sets created in 
Step3..
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Theorem 3 (see [Hromkovic, 2004])

Algorithm PTASSKP is a PTAS for SKP.
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