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Definitions and terminology

We consider DFA: &7 = (Q, ¥, d).

e @ the state set

e Y the input alphabet

e ) :Q XX — Q the transition function

&/ is called synchronizing if there exists a word w € ¥* whose
action resets &7, that is, leaves the automaton in one particular
state no matter which state in Q it started at: d(q, w) = 6(¢’, w)
for all g, ¢’ € Q.

|Q.w|=1. Here Q.v ={d(q,v) | g € Q}.

Any w with this property is a reset word for <.

Other names:
e for automata: directable, cofinal, collapsible, etc;
e for words: directing, recurrent, synchronizing, etc.
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A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1
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Cerny paper

The notion was formalized in 1964 in a paper by Jan Cerny
(Pozndmka k homogénnym eksperimentom s kone&nymi
automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied,

14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.
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14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.
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Cerny paper

The notion was formalized in 1964 in a paper by Jan Cerny
(Pozndmka k homogénnym eksperimentom s kone&nymi
automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied,
14, no.3, 208-216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Cerny’s
original motivation).
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It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.
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It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.

e Cerny’s paper published in Slovak language remained unknown in
the English-speaking world for quite a long time.
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Other sources

It is not surprising that synchronizing automata were re-invented a
number of times:

e The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.

e Cerny’s paper published in Slovak language remained unknown in
the English-speaking world for quite a long time.

Example: A. E. Laemmel, B. Rudner, Study of the application of
coding theory, Report PIBEP-69-034, Polytechnic Inst. Brooklyn,
Dept. Electrophysics, Farmingdale, N.Y., 94 pp.
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Re-inventing by Engineers

Since the 60s and till the 90s synchronizing automata were
considered as a useful tool for testing of reactive systems (first
circuits, later protocols).
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In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.

Ni3, Nov 10, 2009



Introduction Synchronizing automata
History and motivation
Outline of this talk

Re-inventing by Engineers

Since the 60s and till the 90s synchronizing automata were
considered as a useful tool for testing of reactive systems (first
circuits, later protocols).

In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.

Suppose that one of the parts of a certain device has the following
shape:

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Introduction Synchronizing automata
History and motivation
Outline of this talk

Re-inventing by Engineers

Since the 60s and till the 90s synchronizing automata were
considered as a useful tool for testing of reactive systems (first
circuits, later protocols).

In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.

Suppose that one of the parts of a certain device has the following
shape:

Such parts arrive at manufacturing sites in boxes and they need to

be sorted and oriented before assembly. Ni& Nov 10. 2009
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Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

0 i
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Re-inventing by Engineers

Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

0 i

Suppose that prior the assembly the part should take the
“bump-left” orientation (the second one in the picture). Thus, one
has to construct an orienter which action will put the part in the
prescribed position independently of its initial orientation.

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Introduction Synchronizing automata
History and motivation
Outline of this talk

Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.
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We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.

A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.

{
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Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.

A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.

[EN

Being curried by the belt, the part then is forced to turn 90°
clockwise.
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We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
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A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.
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Being curried by the belt, the part then is forced to turn 90°
clockwise.
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Re-inventing by Engineers

A low obstacle has the same effect whenever the part is in the
“bump-down” orientation; otherwise it does not touch the part
which therefore passes by without changing the orientation.
The following schema summarizes how the obstacles effect the
orientation of the part in question:
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Re-inventing by Engineers

We met this picture a few slides ago:

— this was our example of a synchronizing automaton, and we saw
that abbbabbba is a reset sequence of actions.
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Re-inventing by Engineers

We met this picture a few slides ago:

— this was our example of a synchronizing automaton, and we saw
that abbbabbba is a reset sequence of actions. Hence the series of
obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensorless orienter. Nig, Nov 10, 2009
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Possible Use in Biocomputing

In DNA-computing, there is a fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).
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Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
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They have produced a solution containing 3 x 1
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Possible Use in Biocomputing

In DNA-computing, there is a fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).

They have produced a solution containing 3 x 10°< identical
DNA-based automata per ul. These automata can work in parallel
on different inputs (DNA strands), thus ending up in different and
unpredictable states.
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Possible Use in Biocomputing

In DNA-computing, there is a fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430-434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191-2196, etc).

They have produced a solution containing 3 x 1012 identical
DNA-based automata per ul. These automata can work in parallel
on different inputs (DNA strands), thus ending up in different and
unpredictable states. One has to feed the automata with an reset
sequence (again encoded by a DNA-strand) in order to get them
ready for a new use.
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e From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.
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Outline of the talk

e From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.

e Synchronizing automata constitute an interesting combinatorial
object. Their studies are mainly motivated by the Cerny conjecture.
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Complexity issues

Power automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing?
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is the following one: given an automaton, how to determine
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straightforward solution comes from the classic power automaton

construction.
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Power automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(&/) of a given DFA & = (Q, L, §):
- states are the non-empty subsets of Q,
-0(P,a)=P.a={d(p,a) | p € P}
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Power automaton

Not every DFA is synchronizing. Therefore, the very first question
is the following one: given an automaton, how to determine
whether or not it is synchronizing? This question is easy, and a
straightforward solution comes from the classic power automaton
construction.

The power automaton P(&/) of a given DFA & = (Q, L, §):
- states are the non-empty subsets of Q,
-0(P,a)=P.a={d(p,a) | p € P}

A w € X* is a reset word for the DFA & iff w labels a path in
P(«) starting at Q and ending at a singleton.
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An example

a a a Nis, Nov 10, 2009
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Polynomial algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path

from Q to a singleton? The latter question can be easily answered
by BFS.
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Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from Q to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of &7.

The following result by éerny gives a polynomial algorithm:
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Polynomial algorithm

Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the
underlying digraph of the power automaton P(&): is there a path
from Q to a singleton? The latter question can be easily answered
by BFS. This algorithm is however exponential w.r.t. the size of &7.
The following result by Cerny gives a polynomial algorithm:

Proposition. A DFA o/ = (Q, X, d) is synchronizing iff for every
q,q € Q there exists a word w € T* such that 6(q, w) = d(q’, w).

Ni3, Nov 10, 2009



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

An example

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

An example

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

An example

a, Q.a=1{1,2,3};
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a, Q.a={1,2,3};

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

An example

a, Q.a={1,2,3}; a-bba, Q.abba=1{1,3}

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

An example

a, Q.a={1,2,3}; a-bba, Q.abba={1,3}
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An example

a, Q.a={1,2,3}; a-bba, Q.abba=1{1,3}
abba - babbba, Q .abbababbba = {1}
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An example

a, Q.a={1,2,3}; a-bba, Q.abba=1{1,3}
abba - babbba, Q .abbababbba = {1}

Observe that the reset word constructed this way is of length 10
while we know a reset word of length 9 for this automatoR.. nov 10. 2009
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q.
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Complexity issues

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the

1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.
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Complexity issues

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need
O(n® + n? - |Z|) time.
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Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
r Complexity issues

Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need
O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n®):
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n%): the algorithm
makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (5) — (5).
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n%): the algorithm

makes at most n — 1 steps and the length of the segment added in
the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (5) — (). This gives the

3_
upper bound 5.
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Thus, recognizing synchronizability reduces to a reachability
problem in the automaton whose states are the 2-subsets and the
1-subsets of Q. The latter can be solved by BFS in O(n? - |Z|)
time where n = |Q)|.

If one also wants to produce a reset word, one need

O(n® + n? - |Z|) time.

Clearly, the resulting reset word has length O(n%): the algorithm
makes at most n — 1 steps and the length of the segment added in

the step when k states are still to be compressed (n > k > 2) is at
most 1+ # of dark-grey 2-subsets, i.e. 1+ (5) — (). This gives the

upper bound "33_". Can we do better? What is the exact bound?
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A resource for improvement
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A resource for improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.
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A resource for improvement

We see that the shortest path from a light-grey 2-subset to a
singleton do not necessarily pass through all dark-grey 2-subsets.
Consider a generic step of the algorithm at which states to be
compressed form a set P with |P| = k > 1. What is the minimum
length of a word v € X* such that |P.v| < k7
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < ("_’2‘+2).
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Complexity issues

In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < %:
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < %:

B0 (2)+0-
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < %:

Q)+ ()-
GROAE YA
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < %:

()G 2)+)-
0@ ()6
<§)+(g>+...+("g1)+(g>:'“: NiS, Nov 10, 2009
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In the step when k states are still to be compressed, the
compression can always be achieved by applying a suitable word of
length < (""5%2). Jean-Eric Pin, 1983, based on a non-trivial
combinatorial result by Peter Frankl (An extremal problem for two
families of sets, Eur. J. Comb., 3 (1982) 125-127).

Summing up over k = n,...,2, we see that the greedy algorithm
always returns a reset word of length < %:

Q0@ () ()
GRERAENEYHAE
B R e
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Example revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.
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Example revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.

b 0123 —2
a
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Example revisited

We have already seen that the greedy algorithm fails to find a reset
word of minimum length.

b 0123 —2
a
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Short reset words are hard to find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large:
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Short reset words are hard to find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n?log n).
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Short reset words are hard to find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n?log n).

The behaviour of the greedy algorithm on average is not yet
understood;

Ni3, Nov 10, 2009



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

Short reset words are hard to find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n?log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.
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Short reset words are hard to find

Actually, the gap between the minimum length of a reset word and
the length of the word produced by the greedy algorithm may be
arbitrarily large: for each n > 1 there exists a synchronizing
automaton with n states whose shortest reset word has length

(n — 1)? while the greedy algorithm produces a reset word of
length Q(n?log n).

The behaviour of the greedy algorithm on average is not yet
understood; practically it behaves rather well.

Under standard assumptions (like NP 7 coNP) no polynomial
algorithm, even non-deterministic, can find the minimum length of
reset words for synchronizing automata.

Ni3, Nov 10, 2009



Checking Synchronizability
Algorithmic issues Studying Greedy Algorithm
Complexity issues

Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!
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Non-approximability

However, all known results were consistent with the existence of
very good polynomial approximation algorithms for the problem!

Recently, Mikhail Berlinkov, a PhD student of mine, has shown
that under NP # P, for no k, there may exists a polynomial
algorithm that, given a synchronizing automaton, produces a reset
word whose length is less than kxminimum possible length of a
reset word.
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The Cerny automata

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?
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The Cerny automata

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?
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The Cerny automata

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n =2,3,...,
of synchronizing automata over 2 letters.
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The Cerny automata

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n =2,3,...,
of synchronizing automata over 2 letters.

The states of €, are the residues modulo n, and the input letters a
and b act as follows:

5(0,a) =1, 6(m,a) = mfor 0 < m < n, 6(m,b) = m+1 (mod n).
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The Cerny automata

Suppose a synchronizing automaton has n states. What is the
length of its shortest reset word?

We know an upper bound: there always exists a reset word of
length %. What about a lower bound?

In his 1964 paper Jan Cerny constructed a series €, n =2,3,...,
of synchronizing automata over 2 letters.

The states of €, are the residues modulo n, and the input letters a
and b act as follows:

5(0,a) =1, 6(m,a) = mfor 0 < m < n, 6(m,b) = m+1 (mod n).

The automaton used as an example above is ;.
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The Cerny automata

Here is a generic automaton from the Cerny series:
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The Cerny automata

Here is a generic automaton from the Cerny series:

Cerny has proved that the shortest reset word for %, is
(ab™1)"=23 of length (n — 1).
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The conjecture

Cerny Conjecture Kari’s automaton

The Cerny automata

Here is a generic automaton from the Cerny series:

Cerny has proved that the shortest reset word for %, is
(ab""1)"=2a of length (n — 1)?. As other results from Cerny’s
paper of 1964, this nice series of automata has been rediscovered

many times. Nis, Nov 10, 2009
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The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n=2,3,..., yields the inequality
C(n) > (n—1)2
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The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n=2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n —1)? holds true.
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The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n=2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n — 1)? holds true. This simply looking conjecture is
arguably the most longstanding open problem in the combinatorial
theory of finite automata.
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The Cerny function

Define the Cerny function C(n) as the maximum length of shortest
reset words for synchronizing automata with n states. The above
property of the series {%,}, n=2,3,..., yields the inequality
C(n) > (n—1)2

The Cerny conjecture is the claim that in fact the equality

C(n) = (n — 1)? holds true. This simply looking conjecture is
arguably the most longstanding open problem in the combinatorial
theory of finite automata. Everything we know about the
conjecture in general can be summarized in one line:

3—n

6

n

(n—1)> < C(n) <
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A discussion

Why is the problem so surprisingly difficult?
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A discussion

Why is the problem so surprisingly difficult?

e non-locality: prefixes of optimal solutions need not be optimal
(that’s why the greedy algorithm fails);
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A discussion

Why is the problem so surprisingly difficult?

e non-locality: prefixes of optimal solutions need not be optimal
(that’s why the greedy algorithm fails);
e combinatorics of finite sets is encoded in the problem.
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A discussion

Why is the problem so surprisingly difficult?

e non-locality: prefixes of optimal solutions need not be optimal
(that’s why the greedy algorithm fails);
e combinatorics of finite sets is encoded in the problem.

Yet another reason: “slowly” synchronizing automata turn out to
be extremely rare.
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A discussion

Why is the problem so surprisingly difficult?
e non-locality: prefixes of optimal solutions need not be optimal

(that’s why the greedy algorithm fails);
e combinatorics of finite sets is encoded in the problem.

Yet another reason: “slowly” synchronizing automata turn out to
be extremely rare. The only known infinite series of n-state
synchronizing automata with shortest reset words of length

(n —1)? is the Cerny series €, n = 2,3, ..., with a few sporadic
examples for n < 6.
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Random Automata

A (partial) explanation of these experimental observations:
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Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36).
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Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36). In automata-theoretic terms, this fact means that a
randomly chosen DFA with n states and a sufficiently large input
alphabet tends to be synchronizing and is reset by any word of
length > 2n.
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Random Automata

A (partial) explanation of these experimental observations: if Q is
an n-set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is a constant map (Peter
Higgins, The range order of a product of i transformations from a
finite full transformation semigroup, Semigroup Forum, 37 (1988)
31-36). In automata-theoretic terms, this fact means that a
randomly chosen DFA with n states and a sufficiently large input
alphabet tends to be synchronizing and is reset by any word of
length > 2n.

Thus, “slowly” synchronizing automata cannot be discovered via a
random sampling.
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Sporadic Examples: n =2

A synchronizing automaton & = (Q, X, ¢) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing.
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Sporadic Examples: n =2

A synchronizing automaton & = (Q, X, ¢) is proper if none of the
automata obtained from &7 by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %> is not.
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Sporadic Examples: n =2

A synchronizing automaton & = (Q, X, ¢) is proper if none of the
automata obtained from &/ by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %> is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1).
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Sporadic Examples: n =2

A synchronizing automaton & = (Q, X, ¢) is proper if none of the
automata obtained from &7 by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %> is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1)?. We present
here all known proper synchronizing automata beyond the Cerny
series €p, n = 3,4, ..., that reach the Cerny bound.
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Sporadic Examples: n =2

A synchronizing automaton & = (Q, X, ¢) is proper if none of the
automata obtained from &7 by erasing any letter in ¥ are
synchronizing. E.g., the Cerny automata %, with n > 2 are proper
while %> is not.

A synchronizing automaton with n states reaches the Cerny bound
if the minimum length of its reset words is (n — 1)?. We present
here all known proper synchronizing automata beyond the Cerny
series €p, n = 3,4, ..., that reach the Cerny bound.

For the sake of completeness, we start with n = 2:

a
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Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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Sporadic Examples: n =3

For n = 3 we have three sporadic automata:
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Sporadic Examples: n =3

For n = 3 we have three sporadic automata:

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Construction
\| The conjecture
Cerny Conjecture Kari’s automaton

Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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Sporadic Examples: n =4

Also for n = 4 three sporadic automata are known:
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Roman’'s automaton

A proper 5-state automaton reaching the Cerny bound has been
recently discovered by Adam Roman.
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Roman’'s automaton

A proper 5-state automaton reaching the Cerny bound has been
recently discovered by Adam Roman.
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Kari's automaton

The last in our list and the most remarkable example was
published in 2001 by Jarkko Kari (A counter example to a

conjecture concerning synchronizing words in finite automata,
EATCS Bull., 73, 146).

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Construction
\| The conjecture
Cerny Conjecture Kari's automaton

Kari's automaton

The last in our list and the most remarkable example was
published in 2001 by Jarkko Kari (A counter example to a

conjecture concerning synchronizing words in finite automata,
EATCS Bull., 73, 146).
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Pin’s conjecture

Kari's automaton % has refuted several conjectures.
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Pin’s conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if a DFA & = (Q, X, §) with n states
admits a word w € L* such that |Q.w| =k, 1 < k < n, then &
possesses a word of length at most (n — k)? with the same
property.
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Pin’s conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if a DFA & = (Q, X, §) with n states
admits a word w € L* such that |Q.w| =k, 1 < k < n, then &
possesses a word of length at most (n — k)? with the same

property. (The Cerny conjecture corresponds to the case k = 1.)

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Construction
\lg The conjecture
Cerny Conjecture Kari's automaton

Pin’s conjecture

Kari's automaton % has refuted several conjectures.

The most well known of them was suggested by Jean-Eric Pin in
1978. Pin conjectured that if a DFA & = (Q, X, §) with n states
admits a word w € L* such that |Q.w| =k, 1 < k < n, then &
possesses a word of length at most (n — k)? with the same

property. (The Cerny conjecture corresponds to the case k = 1.)

However, in % there is no word w of length 16 = (6 — 2)? such
that |Q.w| = 2.
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Rank conjecture

The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over ¥*.
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The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over X*. Synchronizing automata are
precisely those of rank 1.
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Rank conjecture

The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over X*. Synchronizing automata are
precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture:
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Rank conjecture

The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over X*. Synchronizing automata are
precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture: if a DFA & = (Q, X, d) with n states
has rank k, then there exists a word w € ¥* of length at most

(n — k)? such that |Q.w| = k.
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Rank conjecture

The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over X*. Synchronizing automata are
precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture: if a DFA & = (Q, X, d) with n states
has rank k, then there exists a word w € ¥* of length at most

(n — k)? such that |@.w| = k. Again, the Cerny conjecture
corresponds to the case k = 1.
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Rank conjecture

The rank of a DFA &/ = (Q, X, d) is the minimum cardinality of
the sets Q. w where w runs over X*. Synchronizing automata are
precisely those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the
following rank conjecture: if a DFA & = (Q, X, d) with n states
has rank k, then there exists a word w € ¥* of length at most

(n — k)? such that |@.w| = k. Again, the Cerny conjecture
corresponds to the case k = 1.

Kari’s automaton does not refute the rank conjecture!

Ni3, Nov 10, 2009



Construction
\| The conjecture
Cerny Conjecture Kari's automaton

Extensibility conjecture

Yet another hope killed by Kari's example is the extensibility
conjecture.

Nis, Nov 10, 2009

Mikhail Volkov Synchronizing Automata



Construction
\| The conjecture
Cerny Conjecture Kari's automaton

Extensibility conjecture

Yet another hope killed by Kari's example is the extensibility
conjecture. In a DFA & = (Q, X, ), a subset P C Q is extensible

if P=R.w for some w € L* of length at most n = |Q| and some
R C Q with |R| > |P|.
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Extensibility conjecture

Yet another hope killed by Kari's example is the extensibility
conjecture. In a DFA & = (Q, X, ), a subset P C Q is extensible
if P=R.w for some w € L* of length at most n = |Q| and some
R C Q with |R| > |P|. It was conjectured that in synchronizing
automata every proper non-singleton subset is extensible.
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Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.
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Extensibility

Observe that the extensibility conjecture implies the Cerny

conjecture.
Indeed, if & = (Q, X, 0) is synchronizing, then some letter a €
should sent two states g, g’ € Q to the same state p.
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Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0) is synchronizing, then some letter a €
should sent two states g, q’ € Q to the same state p. Let

Po ={q,q'} and, for i > 0, let P; be such that |P;| > |P;_1| and
Pi_1 = P;j. w; for some word w; of length < n.
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Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0) is synchronizing, then some letter a €
should sent two states g, q’ € Q to the same state p. Let

Po ={q,q'} and, for i > 0, let P; be such that |P;| > |P;_1| and
Pi_1 = P;j. w; for some word w; of length < n. Then in at most
n — 2 steps the sequence Py, Py, P5,... reaches Q and

Q. Wp_1Wy_p---wia = {p},

that is, wp_1wp_2---wja is a reset word.
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Extensibility

Observe that the extensibility conjecture implies the Cerny
conjecture.

Indeed, if & = (Q, X, 0) is synchronizing, then some letter a €
should sent two states g, q’ € Q to the same state p. Let

Po ={q,q'} and, for i > 0, let P; be such that |P;| > |P;_1| and
Pi_1 = P;j. w; for some word w; of length < n. Then in at most
n — 2 steps the sequence Py, Py, P5,... reaches Q and

Q. Wp_1Wy_p---wia = {p},

that is, wp_1wp—2---wya is a reset word. The length of this reset
word is at most n(n —2) +1 = (n—1)2.
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Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes, in
particular:
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Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes, in
particular:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in Frenchl]).
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Extensibility

Several important results confirming the Cerny conjecture for
various partial cases have been proved by verifying the extensibility
conjecture for the corresponding automata. This includes, in
particular:

e Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Cerny, RAIRO Inform. Theor. Appl.,
32 (1998) 21-34 [in Frenchl]).

e Jarkko Kari's result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223-232.)
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Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of
length 7).
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Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of

length 7).
Thus, the extensibility conjecture fails, and the approach based on

it cannot prove the Cerny conjecture in general.
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Extensibility vs Kari's Example

However, in % there exists a 2-subset that cannot be extended to
a larger subset by any word of length 6 (and even by any word of
length 7).

Thus, the extensibility conjecture fails, and the approach based on
it cannot prove the Cerny conjecture in general.

However, studying the extensibility phenomenon in synchronizing
automata appears to be worthwhile: if there is a linear bound on
the minimum length of words extending non-singleton proper
subsets of a synchronizing automaton, then there is a quadratic
bound on the minimum length of reset words for the automaton.
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