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Combinatorics on Words

The area of Combinatorics on Words took birth at the beginning of the
last century: the works of Axel Thue.

Focus on: several combinatorial problems that arose in the study of the
sequences of symbols, which were solved with the usual tools of discrete
mathematics.

Some of the most important results obtained by Thue regarded the
repetitions (consecutive occurrences of a factor) inside a word. For
example: the infinite Thue word.

The interest in the study of Combinatorics on Words is increasing:
computer science (language theoretic properties, algorithms on strings,
data compression, data communication, model checking), biology and
bio-inspired computing (DNA analysis, bio-inspired computing models,
molecular biology), etc., starting from the premise that the data used in
these areas can be easily represented as words over some particular
alphabet.
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Partial and Infinite Words

Partial words (a canonical extension of the classical words) are sequences
that, besides regular symbols, may have a number of unknown symbols,
called “holes” or “wild cards”.

a�aba�babaa�ba

Motivated by molecular biology: the alignment of the DNA sequences is
conceived as a construction of two compatible partial words.

Combinatorial properties studied: periodicity, freeness, primitivity,
conjugacy etc.. Part of the studies were focused on finding efficient
algorithms for testing such properties.

Typically, the words have finite length (i.e, they have a finite number of
symbols).However, in many applications, the length of the words
investigated can be arbitrarily large (i.e, they are defined by some iterated
algorithmic process, and, at each moment we know only a finite part of
the word, but also know how it can be extended).
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Focus (first part): Queries and Updates

We are not interested only in the properties of a given word, but also in
the properties of its factors. Thus: given a partial word as input,
construct data structures (using efficient algorithms) that enable us to
answer in constant time combinatorial queries regarding the factors of
that word (is a given factor a repetition?, is a given factor primitive?,
etc.).

We define an update operation for partial words: add a new symbol at a
word’s rightmost end. After such an operation is performed, we
investigate how the data structures constructed before can be brought up
to date, in order to still be able to answer in constant time combinatorial
queries.

Differently from previous approaches: we are interested in constructing
data structures allowing us to answer, in constant time, various
combinatorial queries regarding every factor of a partial word, and that
can be easily updated when the word is updated; on the other hand, the
problems approached so far in this line of research consisted in testing
combinatorial properties of the entire input word.
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Focus (second part): Counting Problems

Once we are able to identify fast the factors verify a combinatorial
property, we are interested in computing the number of full words, over a
given alphabet, compatible with such factors. For example: the number
of distinct squares (i.e., full words of the form xx compatible with a factor
of the given partial word).

Moreover, we can focus on even more natural problems, related to
subword complexity: what is the number of distinct full factors of the
same length of a partial word (for a given alphabet), what is the number
of distinct full factors of a partial word (for a given alphabet)? The
distinct full factors of a partial word are the full words compatible with at
least one factor of that partial word.

We show that several such problems are complete for the class #P (the
class of function problems of the form ”compute f (x)” where f is the
number of accepting paths of an NP Turing machine).

We were not able to solve the main problem (what is the number of
distinct full factors of a partial word): is it #P-complete? can it be
solved efficiently? However, we were able to show that the usual
approach (counting separately words of different length) cannot be
applied to get an efficient solution.
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Partial Words

A partial word of length n over the alphabet A is a partial function
u :{1,. . ., n} ◦→A. For i ∈ {1, . . . , n}, if u(i) is defined we say that i
belongs to the domain of u (denoted by i ∈ D(u)), otherwise we say that
i belongs to the set of holes of u (denoted by i ∈ H(u)).

Finite partial words are seen as words over the extended alphabet
A ∪ {�}: a partial word u of length n is depicted as u = a1 . . . an, where
ai = u(i), for i ∈ D(u), and ai = �, otherwise. In this way, we define the
catenation, respectively the equality, of partial words, as the catenation,
respectively the equality, of the corresponding words over A ∪ {�}.
If u and v are two partial words of equal length, then u is said to be
contained in v , u ⊂ v , if all the elements of D(u) are contained in D(v)
and u(i) = v(i) for all i ∈ D(u).

Two partial words u and v are compatible, u ↑ v , if there exists a partial
word w such that u ⊂ w and v ⊂ w .

We say that the partial word u is a factor of the partial word w if there
exist partial words x and y such that w = xuy . If w = a1 . . . an, we
denote by w [i ..j ] the factor ai . . . aj of w , and by w [i ] the symbol ai .
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Combinatorial Properties of Partial Words

Let w ∈ (A ∪ {�})∗ be a partial word.

w is said to be a k-repetition if w = x1 . . . xk and there exists a
non-empty partial word u such that xi ⊂ u for all i ∈ {1, . . . , k}.
w is said to be primitive if it is not a k-repetition, for any k > 1.

w is said to be k-free if it does not contain a k-repetition.

A word of the form x1y1x2y2x3 for which there exist two partial words x
and y , with |x | > 0, such that xi ⊂ x , for i ∈ {1, 2, 3}, and yj ⊂ y , for
j ∈ {1, 2}, is called overlap; w is said to be overlap-free if it does not
contain an overlap.
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Combinatorial Queries on Partial Words

Problem

Given a partial word w, with n symbols (labeled w [1], . . . ,w [n]), over the
alphabet V , preprocess this partial word in order to answer the queries:
– “is w[i..j] a k-repetition?”, denoted rep(i , j , k), where i , j , k∈{1, . . . , n}, i< j .
– “is w[i..j] k-free?”, denoted free(i , j , k), where i , j , k ∈ {1, . . . , n}, i < j .
– “is w[i..j] overlap-free?”, denoted o-free(i , j), where i , j ∈ {1, . . . , n}, i < j .
– “is w[i..j] primitive?”, denoted prim(i , j), where i , j ∈ {1, . . . , n}, i < j .
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Updates and Queries on Partial Words

Problem

Consider the following update operation for a partial word w: add a symbol
a ∈ V ∪ {�} at the rightmost end of w, to obtain wa. Preprocess w and define
a method to update the data structures constructed during the preprocessing in
order to answer in constant time rep, free, o-free and prim queries, for a word
obtained after several update operations were applied to w.
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Constant Range Minimum Queries

Problem (Static)

Given an array T with n elements from a totally ordered set, and a natural
constant L, preprocess this array in order to answer queries “find
min posT (i , i + L− 1)”, where
min posT (i , i + L− 1) = arg mink∈{i,...,i+L−1} T [k] (i.e. min posT (i , i + L− 1)
returns the position of the smallest value in the interval of T starting on
position i and having length L: T [i ],T [i + 1], . . . ,T [i + L− 1]); in case of
multiple possible answers, min pos returns the rightmost (greatest) position
where the smallest value in the interval is found.

Problem (Dynamic)

We consider the following update operation for an array T : insert a number M
at the end of the array T . Preprocess T and define an algorithmic method to
update the data structures constructed during the preprocessing (if necessary,
construct additional data structures), such that we can still answer min pos
queries, defined in the problem above, for an array obtained from T after an
arbitrary sequence of update operations was applied to it.
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First Approach: The static problem

Problem (Static Range Minimum Query)

Given an array T with n elements from a totally ordered set, preprocess this
array in order to be able to answer queries “find minposT (i , j)”, where
min posT (i , j) = arg mink∈{i,...,j} T [k]; in case of multiple possible answers, we
assume that min pos returns the rightmost position where the smallest value in
the interval is found.

The most efficient solution of this problem requires O(n) preprocessing time,
O(n) space to store the data structures constructed, and O(1) time to answer
each query.
• H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and related techniques for
geometry problems, Proc. 16th ACM STOC, 135–143, 1984.
• D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13, 338–355, 1984.

• E. Demaine, O. Weimann, Advanced Data Structures, Lecture Notes from

MIT, Lecture 15,

http://courses.csail.mit.edu/6.851/spring07/lec.html, 2007.
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First Approach: The dynamic problem

Problem (Dynamic RMQ)

We consider the following update operation for an array T : insert a number M
at the end of the array T . Preprocess T and define an algorithmic method to
update the data structures constructed during the preprocessing (if necessary,
construct additional data structures), such that we can still answer minpos
queries for an array obtained from T after an arbitrary sequence of update
operations was applied to it.

The problem can be solved with O(log2 n) update time, in the worst case, and
constant query time.
The solution can be particularized to solve the Dynamic Constant Range
Minimum Query problem with O(log2 L) update time, in the worst case, and
constant query time.
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Second Approach: static and dynamic problems

• We use the linear data structure called deque (double ended queue): a linear
list where both the insertion (push) and deletion (pop) operation can be
executed at any of the list’s ends (back and front).

• The idea is to insert one by one, in increasing order, the numbers
{1, 2, . . . , n} in the back end of a deque DT , using the following algorithm:
– When i is inserted in the back end of the deque DT , we pop from the front of
the deque all the numbers k such that k ≤ i − L; then, we pop from the back
end of the deque all the numbers k that verify T [k] ≥ T [i ];
• What we get:
– Thus, DT contains only numbers in the interval [i − L + 1..i ]. If i and k are
elements of DT , such that k is closer to the front than i , then k < i and
T [k] < T [i ]; thus, the element k at the front of DT verifies T [k] < T [j ], for all
j in DT .
– After i was inserted DT contains exactly all the elements k from the interval
[i − L + 1..i ] that verify T [k] < T [i ], and is ordered increasingly.
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Second Approach: static and dynamic problems

To conclude: after i was inserted, the element in front of the deque is
min posT (i − L + 1, i). Memorizing these values in an array enables us to
answer min pos queries in constant time.

Every i , 1 ≤ i ≤ n, is inserted once in the deque and popped at most
once, thus the overall complexity of the preprocessing of the array T is
O(n). This is, also, the total time needed to perform n insertions in the
deque, therefore the amortized complexity of an insertion operation is
O(1) (although a single insertion may require, in the worst case, L pops
from the deque, thus O(L) time).

An update of the array T leads to the insertion of a new element in the
deque. This insertion is handled in the same way as in the preprocessing
phase, since, basically, the algorithm presented above treats every element
of the array T as an element that was newly inserted in that array, and
updates the deque according to the value of this element.

The amortized cost of an insertion in the deque is O(1), thus an update
requires O(1) amortized time (but up to O(L) time in the worst case).
After this update was done, we can still answer queries
min posT (i , i + L− 1) in constant time, for all i ∈ {1, . . . , n + 2− L}.
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rep queries

We define the matrix T , with n rows and bn/2c columns:

T [i ][l ] = max{m | m ≤ bi/lc+ 1, for which there exists a ∈ V such that
w [i − jl ] ⊂ a,∀j ∈ {0, . . . ,m − 1}},

T is computed in time O(n2) by dynamic programming.

Algorithm REP

1. Construct the matrix T for the word w, as described above.

2. Solve the Static Constant RMQ Problem for each of the arrays
T [][l ] and intervals of length l , with l ∈ {1, . . . , bn/2c}.

q. The answer to a query rep(i , j , k) is: if j − i + 1 is divisible by k, we
compute l = (j − i + 1)/k; if T [minposT [][l ](j − l + 1, j)][l ] ≥ k then
the answer to the given query is yes; otherwise the answer is no.
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free queries

We define the matrix H, with n rows and columns, as follows:

H[i ][j ]=


k , where k is the greatest natural number such that w [i ..j ]

contains a k-repetition, given that i < j
1, if i = j
0, if i > j

We compute the elements of H by dynamic programming in O(n2) time, if we
are already able to answer rep queries.

Algorithm FREE

1. Preprocess the partial word w as described in Algorithm REP.

2. Construct the matrix H for the partial word w, as described above.

q. The answer to a query free(i , j , k) is obtained as follows: if
H[i ][j ] ≥ k then the answer is no, otherwise the answer is yes.
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o-free queries

We compute the matrix O with n rows and n columns, defined by:

O[i ][j ] = 1 if w [i ..j ] contains an overlap, and O[i ][j ] = 0 otherwise.

The values stored in this matrix are computed in time O(n2), by dynamic
programming, if we are already able to answer rep queries..

Algorithm O-FREE

1. Preprocess the partial word w as described in Algorithm REP.

2. Construct the matrix O for the partial word w, as described above.

q. The answer to a query o-free(i , j) is obtained as follows: if
O[i ][j ] = 0 then the answer is yes, otherwise the answer is no.
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prim queries

We compute the matrix Pr with n rows and n columns, defined by:

Pr [i ][j ] = 1 if w [i ..j ] is primitive, and Pr [i ][j ] = 0 otherwise.

To compute the value Pr [i ][j ]:

We go through all the positive divisors d of (j − i + 1) and check if
w [i ..j ] is a d-repetition using rep queries.

If there exists at least one number d such that w [i ..j ] is a d-repetition we
set Pr [i ][j ] = 0; otherwise, we set Pr [i ][j ] = 1.

Algorithm PRIMITIVE

1. Preprocess the partial word w as described in Algorithm REP.

2. Construct the matrix Pr , as described above.

q. The answer to a query prim(i , j) is obtained as follows: if
Pr [i ][j ] = 0 then the answer is no, otherwise the answer is yes.
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prim queries - time complexity

A brute force implementation of the algorithm computing Pr achieves a time
complexity of O(n2√n).
However, the number of divisors we need to analyze in order to compute all the
values of Pr is (

∑n
i=1 σ(i)), where σ(i) is the number of positive divisors of i .

And
∑n

i=1 σ(i) ∈ O(n log2 n), because ((
∑n

i=1
1
i
)/(log2 n)) converges to a

positive constant.
Therefore, the first step in the computation of the elements of the matrix Pr is
to keep, in an array, the lists of divisors for every l ∈ {1, . . . , n}.
This data structure will take O(n log2 n) space and can be computed in
O(n log2 n) using a sieve method: we go through all the numbers i from 1 to n
and add i to the lists of divisors of the numbers i , 2i , ..., bn/ici .
Then, we compute Pr [i ][j ] as we described above, but searching the divisors of

the length of a given factor in the newly computed array, and obtain the overall

complexity O(n2 log2 n) for the computation of the elements of the matrix Pr .
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Conclusion Queries

Theorem

A given partial word w, of length n, can be processed in time O(n2),
respectively O(n2 log2 n), in order to be able to answer rep, free, o-free and,
respectively, prim queries, in time O(1).
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Updates

Adding a symbol to the partial word w reflects in adding a row and a
column to the matrix T , and updating the structures needed to answer
min pos queries for each of its rows. Time: O(n log2 n) in the worst case
(both approaches), O(n) amortized (second approach).

Then, the matrices constructed for each type of queries (e.g., the matrix
H. O, Pr constructed above) are updated accordingly. Each such update
consists in adding at most one row and one column to each of these
matrices (computed as in the static case). Time: O(n).

We apply the same algorithms to answer queries in constant time.

The most time consuming part in the above updating the structures
needed to answer min pos queries for the rows of the matrix T , but this
can be done as described in the previous slides.
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Then, the matrices constructed for each type of queries (e.g., the matrix
H. O, Pr constructed above) are updated accordingly. Each such update
consists in adding at most one row and one column to each of these
matrices (computed as in the static case). Time: O(n).
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Conclusion Updates and Queries

Theorem

A given partial word w, of length n, can be processed in time O(n2),
respectively O(n2 log2 n), in order to be able to answer rep, free, o-free and,
respectively, prim queries, in time O(1). If update operations, in which a new
symbol is added to the rightmost end of w, are applied, the data structures
constructed in the processing above can be updated in at most O(n log2 n) time
(or O(n) amortized time), respectively at most O(n log2 n) time, per update,
and still answer rep, free, o-free and, respectively, prim queries, in time O(1).
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Further Work in this Direction

More efficient algorithms? (We conjecture that we can obtain linear worst
case time complexity for the updates!)

How the complexity of the preprocessing time decreases in the case of
algorithms which answer queries in non-constant (yet small, for example
logarithmic) time?

Other update operations? (Replacing a � with a given symbol? Replacing
a symbol with �?)

We can identify efficiently all the factors of the partial word w that are
k-repetition, k-free, overlap-free and primitive. Thus we can count how
many different partial words are factors of w and are also k-repetition,
k-free, overlap-free and primitive.
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Introduction: Subword Complexity

Very simple problem for full words: count the number of distinct factors
of a given word!

Efficient solution: linear time, using suffix arrays. We do
not actually check all the factors, just count them!

In the case of partial words: count the number of distinct full words that
are compatible with at least a factor of a given partial word! (for short:
count the number of distinct factors of a partial word).
The full-words-approach doesn’t seem to work: in that case we can order
the words, here we can’t. We conjecture that we cannot do much better
than constructing all the words and counting the distinct ones.

Natural approach (compute subword complexity): count the number of
the distinct full factors of a fixed length of the partial word, sum them up.

Other problems: count the number of the distinct full words of length L,
compatible with a word from a list of partial words of length L, count the
number of distinct k-repetitions full words which are compatible with a
factor of a given partial word w (for example distinct squares), etc.
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Initial Problems

Problem (1)

Given a list of partial words S = {w1,w2, . . . ,wk}, over alphabet V , each
partial word having the same length L, find a word v ∈ V L such that v is not
compatible with any of the words in S.

This problem is NP-Complete (reduction from CNF-SAT). As a consequence:

Problem (2)

Given a list of partial words S = {w1,w2, . . . ,wk}, over alphabet V , each
partial word having the same length L, count the distinct words v ∈ V L such
that v is compatible with at least one of the words in L.

Problem 1 is #P-Complete.
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Further Problems

Problem (3)

Given a partial word w, over alphabet V , find a word v ∈ V L such that v is not
compatible with any of the factors of length L of w.

This problem is NP-Complete (reduction from Problem 1). As a consequence:

Problem (4)

Given a partial word w, over alphabet V , count the distinct words v ∈ V L such
that v is compatible with at least a factor of length L of w.

Problem 4 is #P-Complete, thus it is hard to compute the subword complexity

of a partial word.
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#P-Complete Problems that don’t have an associated
NP-Complete Problem

Problem (5)

Given a partial word w, over alphabet V , count the number of distinct
k-repetitions full words which are compatible with a factor of w.

Problem (6)

Given a partial word w, over alphabet V , count the distinct full factors, over
V \ {#} (where # is a symbol of alph(w)), of w.

Problem 5 and 6 are #P-Complete (Turing reductions from Problem 3).
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Open Problems

Problem (?)

Given a partial word w, over alphabet V , count the distinct full
factors of w.

We conjecture that Problem ? is #P-Complete.
Of course, it is interesting how complex would be to count full
factors of w that verify other combinatorial properties
(overlap-free, k-free, primitive, etc.). However, we strongly believe
that these problems are also #P-Complete.
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THANK YOU!

The speaker’s attendance at this conference was sponsored by the
Alexander von Humboldt Foundation.
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