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Counting Maps for Formal Languages

The study of growth properties of formal languages can be
traced back to Morse and Hedlund, 1938-40.

Since then: lots of computer science papers about counting
maps (words, factors, subsequences, patterns, palindromes,
etc in languages or infinite words are counted).

All these counting maps are called complexities. We count only
words (combinatorial complexity): for L ∈ Σ∗, CL(n) = |L ∩ Σn|.

At the same time, algebraists studied growth maps
(=combinatorial complexity) and growth functions (formal power
series with the coefficients given by growth maps) for the
languages arised from different algebras.
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Combinatorial Complexity and Growth Rate

Combinatorial complexity: L ∈ Σ∗, CL(n) = |L ∩ Σn|

Growth rate: α(L) = lim sup
n→∞

(CL(n))1/n.

If L is factorial (closed under taking factors of the words), then
α(L) = lim

n→∞
(CL(n))1/n = inf (CL(n))1/n.

◮ α(L) = 0: L is finite
◮ α(L) > 1: L is exponential
◮ α(L) = 1: L is subexponential
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Power-Free Languages

Integral powers: mama = (ma)2.
Fractional powers: template = (templa)4/3.
Exponents: exp(mama) = 2, exp(template) = 4/3
Roots: root(mama) = ma, root(template) = templa

Power-freeness: a word is β-free (β+-free) if the exponents of
all its factors are strictly less than β (resp., at most β). We
always write “β-free”, assuming β to be an extended rational.
A β-free language consists of all β-free words over a fixed
alphabet. We denote it L(k , β).

Combinatorial complexity of these languages is intensively
studied since 1980’s. Particular languages were considered, no
universal instrument was known.
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Finite and Infinite: Dejean’s Conjecture

To study combinatorial complexity of power-free languages, it is
useful to know which of them are infinite. If a β-free language
over a k -letter alphabet is infinite, and γ > β, then the γ-free
language over this alphabet is also infinite. But what is the
minimal such β? The answer was conjectured as follows:

Conjecture (Dejean, 1972)

The minimal infinite β-free languages are: L(3, 7
4
+
), L(4, 7

5
+
),

and L(k , k
k−1

+
) for k = 2 and any k ≥ 5.

Finally proved in 2009. Different particular cases are due to
Thue, Dejean, Pansiot, Moulin-Ollagnier, Mohammad-Noori,
Currie, Carpi, Rampersad, and Rao.
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Growth of Power-free Languages: Known Results

◮ L(2, 2+) has polynomial complexity (Restivo, Salemi, 1984)
which is Ω(n1,22) and O(n1,37) (Lepisto, 1996), but cannot
be expressed as Θ(nα) for a single number α (Cassaigne,
1993);

◮ L(2, β) has polynomial complexity whenever 2+ ≤ β ≤ 7
3

and exponential complexity if β ≥ 7
3
+

(Karhumaki, Shallit,
2003), while all infinite languages L(k , β) with k ≥ 3 have
exponential complexity (Conjecture by Shallit);

◮ upper bounds for the growth rates of some particular
power-free languages are known, like 1,4576 for L(2, 3)

(Edlin, 1999), 1,2299 for L(2, 7
3
+
) (Karhumaki, Shallit,

2003), 1,301788 for L(3, 2) (Ochem, 2006), as well as
some “existential” lower bounds for such growth rates.
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Upper Bounds: Reduction

Power-free languages are factorial (closed under taking factors
of words). Factorial languages can be defined in terms of
antidictionaries (sets of minimal forbidden words).
For example, L = Fact((ab)∗) is defined by M = {aa, bb}.

Languages with regular (e.g., finite) antidictionary are regular.

Method of approximation:
Let M be the antidictionary for L, Mj = M ∩Σ≤i , and let Lj be the
factorial language over Σ with the finite antidictionary Mj . Then

M1⊆ . . .⊆Mj⊆ . . .⊆M,
∞⋃

j=1

Mj=M, L⊆ . . .⊆Lj⊆ . . .⊆L1,
∞⋂

j=1

Lj=L,

and for any n CL(n) = . . . = CLn(n) ≤ . . . ≤ CL1(n).

Then get CLj (n) → CL(n) and α(Lj) → α(L) as j→∞.
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Upper Bounds for Growth Rates: Algorithm

We have: power-free language L = L(k , β)

We need efficient algorithms (1) to build a dfa for the
approximating language Lj and (2) to calculate the growth rate
of a regular language from a dfa.

Theorem 1 (S., 2008)

A dfa for calculating α(Lj) can be built in O(N log N) time and
O(N) space, where N = jk(α(L))j/β .

Theorem 2 (S., 2008)

The growth rate of a regular language L recognized by a consis-
tent dfa A can be calculated with the absolute error at most δ,
0 < δ < 1 in time O(− log δ·|A|) using O(|A|) additional space.
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Lower bounds

The same idea fails for lower bounds: all regular subsets of a
power-free language are finite.

Alternative way: estimate the number of words in (Lj − L), using
the properties of the dfa built for Lj in Theorem 1.

Theorem 3 (S., 2009)

Suppose that β ≥ 2 and a number γ satisfies γ + 1
γ⌊j/β⌋−1(γ−1)

≤

α(Lj). Then γ ≤ α(L).

Alas! The condition β ≥ 2 is essential.

Practical efficiency: 5 or more sure digits for α(L) in several
minutes on a PC with 2GB memory.
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Growth Rate Graph for Power-Free Languages
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Asymptotic Formulas for Growth Rates

Let α(k , β) be the growth rate of L(k , β). Combining the
techniques for the upper and lower bounds we can prove the
following result:

Theorem 4 (S., 2009)

For any integer n ≥ 2 the following equalities hold:
α(k , n+) = k − 1

kn−1 + 1
kn − 1

k2n−2 + O( 1
k2n−1 ),

α(k , n+1) = k − 1
kn−1 + 1

kn + O( 1
k2n−1 ).

Besides this, α(k , 2) = k − 1 − 1
k − 1

k2 + O( 1
k3 ).

We also give a conjecture about small exponents:
Conjecture

For any integer n ≥ 0 there exist the limits
αn = lim

k→∞
α(k , k−n

k−n−1
+
) = lim

k→∞
α(k , k−n−1

k−n−2).

Moreover, α0 ≈ 1,242, α1 ≈ 2,326, α2 ≈ 3,376.
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THANK YOU!
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