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Covering projections of graphs

A surjective mapping p : X̃ → X such that Dũ → Du is a bijection

X̃ : covering graph, X : base graph

p−1(u), p−1(x) : fibres

Regular cover : fibres are orbits of a semiregular CT(p) ≤ AutX̃
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Motivation I

1. Complete solution of the long-standing Heawood’s Map Colour
Problem by Ringel and Youngs 74’. Use of covers first recognized by
Alpert and Gross 74’.

2. Combinatorial treatment of graph covers by Gross 74’. Same idea in
Biggs’ monograph Algebraic Graph Theory 74’ (in connection with
symmetries of graphs).

3. Systematic combinatorial theory of graph covers by Gross and Tucker
74’-77’, Topological graph Theory 87’. Extended to graph bundles by
Pisanski and Vrabec 82’.

4. Systematic combinatorial theory of branched coverings of surfaces by
Gross and Tucker 74’-77’, Topological graph Theory 87’. Also by Jones
and Singerman 78’.
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Motivation II - studying symmetries of graphs

5. Vertex, edge, arc transitive, of small valencies

Conjecture of Marušič: every vertex transitive graph is a regular ZZp-cover
of some smaller graph. Confirmed for valencies 3 and 4.

5.1 Compiling lists of highly symmetric graphs

Foster census (Bouwer ‘88): arc-trans. cubic graphs on ≤ 512 vertices
(lattice of regular covers). Extended to 768 vertices by Conder and
Dobcsányi 02’. List of semisymmetric cubic graph ≤ 768 vertices by
Conder, M, Marušič, Potočnik 03’.

5.2 Construction of infinite families

Tutte 46’: cubic graphs ≤ 5-arc trans. Few 5-arc trans. exAmples known.
First infinite family by Djoković 74’ (reg. covers of Tutte’s 8-cage).

5.3 Classifying graphs

Trans. graphs via orbital graphs (essentially: a trans. perm. group and
its stabilizer). Djoković and Miller 80’ classified stabilizers of arc trans.
cubic graphs. Extended to edge-trans. cubic graphs by Goldschmidt 80’.
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Praeger’s normal reduction

THM, Praeger 88’

AutX 2-arc trans, N / AutX with ≥ 3 orbits. Then X→ X/N is a
regular cover, with AutX/N acting 2-arc trans. on X/N.

Base graphs: every normal subgroup has ≤ 2 orbits.

Classify base graphs (usually using Classification of finite simple groups).
The rest are normal covers. Can we give a neat description?
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Key idea: Lifting automorphisms

X̃
g̃−−−−→ X̃

p

y yp

X
g−−−−→ X.

All lifts of G ≤ AutX constitute a group G̃ ≤ AutX̃. There is a short
exact sequence 1→ CT(p)→ G̃→ G→ 1, and any abstract group
extension can be studied as a lifting problem.

THM, Djoković 74’

Let p : X̃→ X regular cover. If G ≤ AutX, s-trans., lifts, then G̃ is
s-trans.

Djoković used topological approach via fundamental groups. Not
appropriate to cope with specific problems arising with graphs.
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Covers and Lifting automorphisms combinatorially

Regular covers by regular voltages in Γ ∼= CT(p)

Basic lifting lemma (for regular covers)

g ∈ AutX lifts ⇔ the mapping vol(W)→ vol(Wg) of voltages of the
fundamental closed walks at some vertex extends to an automor. of Γ
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Abelian regular covers

G has a matrix representation G] on H1(X,ZZ). Consider the transposed
matrix group Gt

]. Then

THM., M.,Marušič, Potočnik, 03’

G ∈ AutX lifts ⇔ the base homology cycles of X are given voltages
which represent a basis of an Gt

]-invariant submodule of H1(X,ZZ).

Invariant submodules determine the covers up to equivalence. There is a
way to reduce the obtained covers up to isomorphism.

Particularly useful when dealing with elementary abelian ZZk
p-covers. We

need to find invariant subspaces of matrix groups acting on ZZr
p, where

r = betti(X).

For concrete covers one can use computer base packages like Magma for
fast computation of invariant subspaces (MeatAxe algorithm).
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G ∈ AutX lifts ⇔ the base homology cycles of X are given voltages
which represent a basis of an Gt

]-invariant submodule of H1(X,ZZ).

Invariant submodules determine the covers up to equivalence. There is a
way to reduce the obtained covers up to isomorphism.

Particularly useful when dealing with elementary abelian ZZk
p-covers. We

need to find invariant subspaces of matrix groups acting on ZZr
p, where

r = betti(X).

For concrete covers one can use computer base packages like Magma for
fast computation of invariant subspaces (MeatAxe algorithm).

8 / 11



Abelian regular covers

G has a matrix representation G] on H1(X,ZZ). Consider the transposed
matrix group Gt

]. Then

THM., M.,Marušič, Potočnik, 03’
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Example

Find all regular elementary abelian covers of the 3-dipole such that some
edge transitive subgroup lifts.

Minimal edge transitive subgroup cyclically permutes the edges, fixing the
two vertices. Induced action on base cycles is given by

R =

(
−1 −1
1 0

)
Rt =

(
−1 1
−1 0

)
The full space gives rise to the homological cover. Proper notrivial
invariant subspaces are 1-dim. ∆ = λ2 + λ + 1, and the eigenvalues
depend on the congruence type of p mod 3.

p = 3, then λ = 1, and v = [1, 2]t

p 6= −1 mod 3, then ∆ irreducible
p = 1 mod 3, then λ = −ξ,−ξ2, and v = [1,−ξ2]t, [1,−ξ]t

The eigenvectors induce voltages assignments on arcs, and hence
determine the derived graphs. The obtained covers are pairwise
nonequivalent, but the last two are isomorphic.
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Classifying transitive covers of intransitive graphs

We consider regular abelain covers, and modified version of Praeger’s
normal reduction. Take quotients X→ X/N by normal subgroups arising
from linear representation on eigenspaces of X.

These subgroups can be computed in terms of eigenvalues and
eigenvectors of the base graph, using complex irreducible characters of
abelian voltage groups.
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Thank you!
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