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Let > be a finite alphabet.
The set of all words over X is >X*: if \ is
the empty word, then the set of nonempty se-
quences is =T = =%\ {\}.

For a € %, |a| denotes the length of a.

For any finite set A we denote |A| the number
of elements contained by A.

lalq — the number of occurences of the letter
a € > in the word a € X%,



The alphabet used is
> ={ai,ap,...,as}
Many results are only for s = 2.

Let u,v be words over .

The word v is a scattered subword of v if

u=p102...06r, v=750171 - -Vr—108rYr
(r > 1 and B;,v; € ).

||, — the number of occurences of u in o as a
scattered subword.

For instance |ajasaias|ajar, = 3.



Definition 1. Let >~ = {aq1,ap,...,as} be an or-
dered alphabet and Mg 41 be the set of

(s + 1) - dimensional upper-triangular matri-
ces with nonnegative integral entries and unit
diagonal.

The Parikh matrix mapping is the morphism
W X — Mgqq
defined: ifk=1,...,s and
Ws(ag) = (M j)1<i j<s+1
then
m;; =1 (1<i<s+1), mp k41 = 1

all other elements of the matrix Ws(ay) being
0.

If || = s is fixed, we will denote W(«a) also
by M.

A matrix M € Mgy 1 with the property M = M,
for a particular word o € >* is called Parikh
matrix.



Theorem 1. Consider ¥ = {aq,...,as} and
a € 2*. The matrix

o= WVs(a) = (mi,j)lgi,jgs—l-l

has the following properties
e m;; =0 foralll<j<i<s+1,
o m;; =1 for all 1 <:1<s-+41,
® m; it1=lalg.q; (1<i<5<s).
So, the second diagonal of the Parikh matrix

of o gives the Parikh vector of «:

\U(Oz) — (|a|a17 |(X|a2, c ey |Qf|a3)-



Example 1. For the alphabet
> ={a,b,c,d} and a« € *:

(1 |O‘|a |O“ab ‘O‘|abc |O‘|abcd\
O 1 Jalp lalke |alped

My=10 O 1 e | g
O O 0 1 g
\ O O 0 0 1

Corollary 1.Va,( € F,

M, 5 = MaMsg.




Definition 2. Two words o, 3 € >* are called
"amiable” iff Mo = Mg.

Denote by a ~4 B the property that a« and g
are amiable words.

The relation ~g is obviously an equivalence re-
lation.

et
o] = {8 | a ~a B}

be the equivalence class defined by the non-
empty word o € >*.



Properties of the classes of amiable words

Let be the alphabet

> ={ai,ap,...,as} (s>2)

Lemma 1.
1. ~q is left/right invariant.

2. aiaj ~a ajai, |’L—]| 22, (1 <7:7j <S);

QA4 1TA410; ~Va Gi410;TA;0541,

Vo € (Z\{az’—laaH—Q})* (1<i<s—1)
(we consider a, = X forany k > s ork <1).



Definition 3. Let us consider a, 3 € >*.

1. o transforms into (3
using a type (1) transformation if

a = xa;a;Yy, B = zaja;y,

where x,y € 3%, a;,a; € X, |t — j| > 2.

2. o transforms into (3
using a type (2) transformation if

O = T 41Y0i410i%, B = 204109004172,
where a;,a;41 € X, x,y,z € X",
Yla;_; = |y‘ai+2 = 0.
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e If o transforms into 3, then obviously S
transforms into o as well (no matter the
transformation type).

We will denote by « <(7’—)> B the fact that
words o and (g transforms one from each

other using a type (i) transformation

(1 € {1,2}).

e If |>| = 2 then only transformations of type
(2) are possible,

Lemma 2. If o & B (1 =1,2) then o ~q B.
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For the binary alphabet X = {a,b}, the next
theorem was proved:

Theorem 2. (Theorem of characterization
of the classes of amiable words):
Leto,B € X% «o~gB. There exists a sequence
of type (2) transformations so that

a& &B.
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et us consider an equivalence class C, corre-
sponding to a given Parikh matrix M.

We define the unoriented graph My, = (V, E)
as follows:

o V =(,;
o (,f) e E <= 3v1,72,73 € {a,b}",

a = yiabysbays, B = y1bayoabys.

The binary words «, 5 are amiable, thus they
belong to the same equivalence class.

Theorem 3. The graph I j; is connected.
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Example 2. Let be the matrix

There are eight binary words which have this
matrix as Parikh matrix:

O — aabbbbaa, ababbaba, abbaabba, baabbaab,
] babaabab, bbaaaabb, baababba, abbabaab

The connected graph I ,; attached is:

abbabaab
bbaaaabbl—baba ababHabba‘abbaHababbabaHaabbbbaa\
{baab’baabeaababbaF
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If || > 2 this result is not true.

Example 3. Let >~ = {a,b,c} and

a = abcbabcbabcbab, (3 = bacabbcabbcbba

These words are amiable, having the Parikh
matrix

1 4 16 14
O1 7 9
M= O 0 1 3
O 0 O 1

However, there is no chain of transformations
(1) + (2) between o and 3 ; therefore, from
this point of view, the Theorem 2 is not true.
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The problem is issued due to the transforma-
tion (2):

= T 41Y0i410i%, B = 20410900417,
where a;,a;,41 € X, =x,y,z€ X,
Yla;_1 = |y|ai+2 = 0.

The subword y may contain characters a;_1 or
a;4o that lead to changes of the Parikh matrix
mapping if a single permutation a;a; — a;ja; 1S
made, but which may be compensated through
a parallel application of multiple transforma-

tions of type (2).
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Morphisms and Parikh Maatrices

A remarkable improvement seems to be the
use of some morphisms which distinguish the
amiable binary words by their Parikh matrices.

If 21 and 25 are two finite nonempty sets, a
morphism on 21 is an application

o - Zi — ZE
such that
¢(uv) = d(u)p(v)

for all u,v € 7.
It is uniquely determined by its values on the
alphabet 2_4.

We shall work using the assumption:

(Vx € o, Ja € 1) [|¢(a)|z > O]

17



Theorem 4. 1If |>5| =1 then

(Vo, B € 1) [a ~a B == ¢(a) ~a ¢(B3)]
Theorem 5. If |32 1| = |X5| = 2, then

(Va,B € XD~ B = () ~a ¢(B)]
Theorem 6. If |X1| = 2, |X5| = 3, then

Vo, B € X7) [a ~¢ 8 =

Mya) — Myg) = , TEZ

© O oo
© O OoOo
O oOo

O O O s
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Using the values of r € Z from Theorem 6 many amiable
words can be separated.

Example 4. 3>; = {a,b}, > = {a,b,c} and the Istrail
morphism defined

¢(a) = abc, ¢(b) = ac.

Let us consider all words with W = (19, 2).
After applying the Istrail morphism, there are no amiable
words a, 3 with ¢(a) ~q ¢(3).

ol |O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
] [T 1T 2 2 3 3 4 4 5 5 6 6 7 7 8 8
#, |1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
me 1T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For every value of ¢ = |a|., the second row of the table
shows the number of amiable words from the set [a]:
the words having the Parikh matrix

1 19 ¢
M=1] 0 1 2
O 0 1

The third row gives the number of classes of amiable
words in which the set X = {¢(w) | w € [a]} is divided,
and the last row of the table represents the greatest
number of components from such a class.
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Example 5. Let us take all the binary words

with W = (10, 10).

The separation in amiable classes is

ol |O 1 2 3 4 5 6 7 8 9 10 11 12 13
@] [T T 2 3 5 7 11 15 22 30 42 54 73 O3
#, |1 1 2 3 5 7 9 15 19 25 31 45 41 67
mee |1 1 1 1 1 1 2 1 2 2 3 2 5 3
ol | 14 15 16 17 18 19 20 21 22 23

[o]| | 121 152 193 237 295 356 433 515 615 720

o 65 65 79 99 93 107 107 121 125 139
Fmaz 6 6 9 6 10 8 14 17 16 13
aleg | 24 25 26 27 28 29 30 31 32
[a]] | 847 978 1131 1289 1420 1652 1860 2065 2293
#es | 135 135 147 159 155 163 157 171 171
Hmaz | 23 24 25 28 34 25 47 35 42

a|ap 33 34 35 36 37 38 39 40

[a]] | 2517 2761 2994 3246 3481 3729 3956 4192 4397

o 183 181 175 187 195 189 195 187

HFmaz 49 52 47 70 56 59 60 84

ola | 42 43 44 45 46 47 48 49

4609 4784 4959 5095 5226 5311 5392 5424 5448

o]
#s | 197 207 203 195 205 211 203 207

HFmaz | B3 70 74 89 92 65 98 73
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ASs an example, for the Parikh matrix

1 10 20
M=1]10 1 10
O 0 1

[a] contains 433 amiable words.

After applying the Istrail morphism, the maxi-
mal set of amiable words is

C={a€X¥| Ma=M, [¢(ca)|apc = 750}

It has 14 elements. Namely:

abbbbbbbabbaaaaaaaba, babbbbbabbabaaaaabaa,
babbbbbbabaaabaabaaa, bbabbabbbbbaaaaaabaa,
bbabbbabbbaabaaabaaa, bbabbbbaabbbaaaabaaa,
bbabbbbababaababaaaa, bbabbbbbaaaabbbaaaaa,
bbbababbbbaaababaaaa, bbbabbababbabaabaaaa,
bbbabbabbaababbaaaaa, bbbbaabbabbaabbaaaaa,
bbbbabaabbabbabaaaaa, bbbbbaaaabbbbbaaaaaa
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Other weaknesses:
Theorem 7. Let ¢ : {a,b}* — {x,y,z}* be a
morphism. If o, 3 € {a,b}* are amiable, then

¢(aB) ~a ¢(Ba)

Also, the reciprocals of Theorems 5 and 6 are
not true. So, regarding Theorem 5:

Let us consider the morphism ¢(a) = zy,
»(b) = yx, and the words o = ab, 3 = ba.

We have a #q B but ¢(a) ~q ¢o(3).

The assertions from the Theorems 5, 6 are
true only for |XZ¢| = 2.
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Let be X1 ={aq1,...,as} (s>2) and
w=ci¢r...cp, (c; € X71) a nonempty word.

Let
V(w) = (ny,...,ns)

be the Parikh vector of w.

We define the alphabet >, = {x1,...,zn} and
a morphism ¢ : X7 — 35 as follows:
Forp=1,...,s:

d(ap) = Thy -+ Ll

where ¢ = ap, (i =1,...,np)

The word w is called " control word’ .
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Example 6. If 1 = {a,b,c} and the control
word w = abccb.

So,n=5 and V(w) = (1,2,2).

Accordingly with this construction, we define

ZQ — {mla Lo, T3, T4, 335}

and

¢(a) =z1, @(b) =zox5, ¢(c) = r3724.

Theorem 8. Using the construction above, for
a word oo € 3%, the Parikh matrix of ¢(«) is

1 aley [olejen - |l

. 0 1 |Oé|02 |a|02...Cn
Moy = -

O O O 1
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A morphism based on a cyclic control word

Let p > 2 be an integer, and w
the control word.

Therefore the morphism

is defined by

¢:3X] — X5

(aq1...a5)P

$(a;) = TiTs4iTos+i- - T(p—1)sti (1 <1< s)

For a € Z’{ the Parikh matrix is

Mya) =

0

0
0

\ 0

( 1 |alg,

1

0
0

|04|a1...aS

|a|a2...a5

atfa,

1

o)

|a|a1...asa1

|a|a2...a5a1

|a | (al...as)P

|a|a2...a5(a1...a5)1’*1

‘a|as(a1...as)1’*1
[

1

25
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All informations are provided by a and the first
S rOws.

S0, we can keep from the Parikh Matrix M)
only the first s rows:

1 ‘a‘al s ‘a|a1---a5 ‘alal---aséh s |a|(a1...a5)1’ \
qu(a) — 0 1 s |:a|a2~-~as |Oé|a2...asa1 I |a|a2...as(a1...as)f’—1

0 O o e, |fa.a e |04|a5(a1...as)p—l y
Let us denote by rowq(«),...,rows(a) the rows

of the matrix qu(oz)

In general the value of p is the highest integer
such that

af = 18] > s
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Theorem 9. The sx (sp+1) matrix H¢(a) can
be recursively generated as follows:

1 0 O ... 0

w7 01 O ... 0
I Mg = -

OO0 ...1 0

2. Mq;a can be obtained from M, as follows:

(a) row;(a;a) «— row;(a)

for j € {1,2,...,s}\ {i};
(b) row;(a;a) «+— row;(a) + row;41 ()

ifl1<z<s,
rows(asa) «— rows(a)+Shifts(rowq(a)).
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Example 7. Let be s=2,p=3. Then

M — 1 |Oé|a |05|ab |a|aba |a|abab |a|ababa |a|ababab
¢() 0 1 J|olp |ofe |ofeas |babe ||babab

If we take the binary amiable words

abbabaab and baababba

we have

7 (1 4 8 10 12 4 4
¢(abbabaab) —™ \ 0 1 4 8 10 4 4
and

T (1 4810 4 4 0
¢(baababba) — \ 0 1 4 8 10 12 4

T herefore these words are separated by 3 ele-
ments (from 14): #abab, #baba, #ababab.
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Unfortunately, this cyclic morphism does not
solve entirely the separation of any amiable
words.

Example 8. The words o« = abcecb and 5 = acbbce
have the same Parikh matrix:

1 1 2 2
2
2
1

O OO
oo+
O N

Their images ¢(a) and ¢(3) constructed with
p = 2 (but any value p > 2 gives the same
result) have also the same Parikh matrix:

1122000
0122000
0012000

Myy=|0001122
0000122
0000012

\ 000000 1)
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Theorem 10. Let X1 = {a1,...,as} be an or-
dered alphabet, and o,3 € X7 be two amiable
words.

Then there is an ordered alphabet 2, and a
morphism ¢ : X7 — 25 such that

¢(a) %a ¢(3)

The construction is based on the control word

w = Q.

Using Theorem 8, the last entry of the first
row in a Parikh matrix for an arbitrary word
vEXT IS [yla

Now, because |a| = |B] = |w| we have |a|lo =1

and |Ble = 1 if and only if a = (.

30



Example 9. The words a = acbbc and 8 = abcceb
from Example 8 can be separated using the
construction from Theorem 10.

For the control word w = o = acbbc:

(11221 1)
012211
v o012 11
¢lackbe) =1 0 0 0 1 2 2
000012
\0 0000 0
(11220 0)
012200
v _loo1210
¢labec) =1 0 0 0 1 2 2
000012
\0 0000 0
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Parikh matrix mappings of languages

et us consider an alphabet > and a language
L C >*, such that

Vae X, Jwe L, |wlg#O0

Theorem 11. Let >~ = {a,b} be an alphabet

and M € M3z a fixed Parikh matrix mapping,

where M = (m;;)1<i j<3. T hen the language
L={a|aeX |a|p=mi3}

is regular.
Theorem 12. Let ¥ = {aq1,ap,...,as} an or-
dered alphabet and M € Mgy 1 a fixed Parikh
matrix mapping. Then the following language
is regular:

L={a|ae* My and M

are identical on the third diagonal}
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Theorem 13. Let L € £1 over the alphabet
2. = {al,aQ,...,aS} and M € Ms—|—1 a Parikh
matrix mapping. It is decidable whether exists
w € L having M,, = M.

1. From M we extract the Parikh vector
V= (CC]_,CCQ,...,CUS)

S
2. Letn= ) =z, Vo={S}, i:=1.
i=1
Vi=Vii1U{a |36 € Vi1, B =5 a,

o] < n, |aa; <z, 1 <7 < s}
IfV,~#=V,_q1 then 2 : =4+ 1 and goto 3.
W =V,NnX*.

. If W =0 then NO, Stop.
Let x € W. If M, = M then YES, Stop.
W =W\ {«} and goto 6.

w

© N oo
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Amiable extensions of Chomsky languages

Let L C >*. We will extend this language by
adding all the words that are amiable with the

elements of L. Formally,
L] ={w|Ja € L, My= Myp}.

or
(L] = U [

acll

[L] is the amiable extension of L.
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Properties:

1. [[L]] = [L];

2. [L1 U Lo] = [L1] U [Lo];

3. [L1][Lo] C [L1Lo];

4. L1 C Ly == [L1] C[Lo2],

5. [L]* € [L*].

6. [L1 N Ly] C[L1]N[Ly].

7. L C[L] < [LIN[L] # 0, where L = >*\ L.

8. L=[L] < L=I[L.
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Proposition 1. Ly = {[L]|L C X*} forms a
Boolean algebra (with the |J and () operators).

Proposition 2. The set of languages charac-
terized by the same set of Parikh matrices
(given by a language L) is a join-semilattice.
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Theorem 14. Let >~ = {a,b} be an alphabet
and L C >* a language.

1. IfL e L.;, with 1 <i<3, then [L] € L.

2. Lo is closed under the [ ]| extension.
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Definition 4. Let n be a non-negative integer,
and 2 a fixed alphabet.

T he following class of languages is defined
APL,(3X) (Amiable Parikh Languages of n or-
der over the alphabet X ) in the following way:

A language L € APL,(X) if

1. All the words of L C >* are amiable (they
have the same Parikh matrix M );

2.
2. Jwq,wp € L such that wq g_)n) wo Where the
transformation (2.n) is irreducible.
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o APLy(X) contains languages whose words
are amiable using only transformations of
type (1).

For instance, if X = {a,b,c}, the languages
L =la], (ax € {a,c}*) are in APLy(X).

e If > is a binary alphabet, then all the lan-
guages L = [a] (e € *) are in APL1(X).
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Theorem 15. If > s an alphabet with || > 2,
then the hierarchy APL,(X) is infinite.

Consider |X| = 3.
Let be the alphabet X = {a <b<c¢} and n a
fixed arbitrary non-negative integer.

w = (abeba)™ Tbac™ Lab

w' = (bacab)” tabc™ lba

Statements:
1 2n 2n?2 (n—1)(2n% —-3n+2)
. 1 0 1 2n (n—1)(3n —2)
1. My= My = O O 1 2n — 2
O 0 O 1
(2.n)

2. The transformation w ¥ w’ is irreducible
of order n.
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The language

(w,w’ € L and between them there exists a
(2.n) irreducible transformation).

If the non-binary alphabet > is fixed, we can
use the notation APL, instead of APL,(X).
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Proposition 3. Let M be a Parikh matrix and
L € APLq1 a language defined by M.

Then there exists an unique integer n, and a
sequence of languages Lq,..., Ly such that

1. L=L{CL>yC...C Ln,
L;e APL;, (1 <i<mn).

In other words, L, = [Ly].
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The following statements are obvious:

o [i,Lre APL, =— LiULye APL,.

o L1,Lroe APL,, L1iNLy# () =— L1 = L».

Proposition 4. If L1,L> € APLp, L1 NLy =
and both languages are defined by the same
Parikh matrix mapping M, then

1. L; C [Li]a 1= 1,2;

2. dL3 € APL, 41 defined by the matrix M,
where L1 U Ly C L3.
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