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Let Σ be a finite alphabet.

The set of all words over Σ is Σ∗; if λ is

the empty word, then the set of nonempty se-

quences is Σ+ = Σ∗ \ {λ}.

For α ∈ Σ∗, |α| denotes the length of α.

For any finite set A we denote |A| the number

of elements contained by A.

|α|a – the number of occurences of the letter

a ∈ Σ in the word α ∈ Σ∗.
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The alphabet used is

Σ = {a1, a2, . . . , as}

Many results are only for s = 2.

Let u, v be words over Σ.

The word u is a scattered subword of v if

u = β1β2 . . . βr, v = γ0β1γ1 . . . γr−1βrγr

(r ≥ 1 and βi, γj ∈ Σ∗).

|α|u – the number of occurences of u in α as a

scattered subword.

For instance |a1a2a1a2|a1a2 = 3.
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Definition 1. Let Σ = {a1, a2, . . . , as} be an or-
dered alphabet and Ms+1 be the set of
(s + 1) - dimensional upper-triangular matri-
ces with nonnegative integral entries and unit
diagonal.

The Parikh matrix mapping is the morphism

Ψs : Σ∗ −→Ms+1

defined: if k = 1, . . . , s and

Ψs(ak) = (mi,j)1≤i,j≤s+1

then

mi,i = 1 (1 ≤ i ≤ s+ 1), mk,k+1 = 1

all other elements of the matrix Ψs(ak) being
0.

If |Σ| = s is fixed, we will denote Ψs(α) also
by Mα.

A matrix M ∈Ms+1 with the property M = Mα

for a particular word α ∈ Σ∗ is called Parikh
matrix.

5



Theorem 1. Consider Σ = {a1, . . . , as} and

α ∈ Σ∗. The matrix

Mα = Ψs(α) = (mi,j)1≤i,j≤s+1

has the following properties

• mi,j = 0 for all 1 ≤ j < i ≤ s+ 1,

• mi,i = 1 for all 1 ≤ i ≤ s+ 1,

• mi,j+1 = |α|ai...aj (1 ≤ i ≤ j ≤ s).

So, the second diagonal of the Parikh matrix

of α gives the Parikh vector of α:

Ψ(α) = (|α|a1, |α|a2, . . . , |α|as).
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Example 1. For the alphabet

Σ = {a, b, c, d} and α ∈ Σ∗:

Mα =


1 |α|a |α|ab |α|abc |α|abcd
0 1 |α|b |α|bc |α|bcd
0 0 1 |α|c |α|cd
0 0 0 1 |α|d
0 0 0 0 1



Corollary 1. ∀α, β ∈ Σ∗,

Mαβ = MαMβ.
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Definition 2. Two words α, β ∈ Σ∗ are called

”amiable” iff Mα = Mβ.

Denote by α ∼a β the property that α and β

are amiable words.

The relation ∼a is obviously an equivalence re-

lation.

Let

[α] = {β | α ∼a β}

be the equivalence class defined by the non-

empty word α ∈ Σ∗.
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Properties of the classes of amiable words

Let be the alphabet

Σ = {a1, a2, . . . , as} (s ≥ 2)

Lemma 1.

1. ∼a is left/right invariant.

2. aiaj ∼a ajai, |i− j| ≥ 2, (1 ≤ i, j ≤ s);

3.

aiai+1xai+1ai ∼a ai+1aixaiai+1,

∀x ∈
(
Σ \ {ai−1, ai+2}

)∗
(1 ≤ i ≤ s − 1)

(we consider ak = λ for any k > s or k < 1).
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Definition 3. Let us consider α, β ∈ Σ∗.

1. α transforms into β

using a type (1) transformation if

α = xaiajy, β = xajaiy,

where x, y ∈ Σ∗, ai, aj ∈ Σ, |i− j| ≥ 2.

2. α transforms into β

using a type (2) transformation if

α = xaiai+1yai+1aiz, β = xai+1aiyaiai+1z,

where ai, ai+1 ∈ Σ, x, y, z ∈ Σ∗,
|y|ai−1 = |y|ai+2 = 0.
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• If α transforms into β, then obviously β

transforms into α as well (no matter the

transformation type).

We will denote by α
(i)←→ β the fact that

words α and β transforms one from each

other using a type (i) transformation

(i ∈ {1,2}).

• If |Σ| = 2 then only transformations of type

(2) are possible.

Lemma 2. If α
(i)←→ β (i = 1,2) then α ∼a β.
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For the binary alphabet Σ = {a, b}, the next

theorem was proved:

Theorem 2. (Theorem of characterization

of the classes of amiable words):

Let α, β ∈ Σ∗, α ∼a β. There exists a sequence

of type (2) transformations so that

α
(2)←→ . . .

(2)←→ β.
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Let us consider an equivalence class C, corre-

sponding to a given Parikh matrix M .

We define the unoriented graph ΓM = (V,E)

as follows:

• V = C;

• (α, β) ∈ E ⇐⇒ ∃γ1, γ2, γ3 ∈ {a, b}∗,

α = γ1abγ2baγ3, β = γ1baγ2abγ3.

The binary words α, β are amiable, thus they

belong to the same equivalence class.

Theorem 3. The graph ΓM is connected.
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Example 2. Let be the matrix

M =

 1 4 8
0 1 4
0 0 1



There are eight binary words which have this

matrix as Parikh matrix:

C =

{
aabbbbaa, ababbaba, abbaabba, baabbaab,
babaabab, bbaaaabb, baababba, abbabaab

}

The connected graph ΓM attached is:

bbaaaabb babaabab abbaabba ababbaba aabbbbaa

abbabaab

baabbaab baababba
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If |Σ| > 2 this result is not true.

Example 3. Let Σ = {a, b, c} and

α = abcbabcbabcbab, β = bacabbcabbcbba

These words are amiable, having the Parikh

matrix

M =


1 4 16 14
0 1 7 9
0 0 1 3
0 0 0 1



However, there is no chain of transformations

(1) + (2) between α and β ; therefore, from

this point of view, the Theorem 2 is not true.
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The problem is issued due to the transforma-

tion (2):

α = xaiai+1yai+1aiz, β = xai+1aiyaiai+1z,

where ai, ai+1 ∈ Σ, x, y, z ∈ Σ∗,
|y|ai−1 = |y|ai+2 = 0.

The subword y may contain characters ai−1 or

ai+2 that lead to changes of the Parikh matrix

mapping if a single permutation aiaj − ajai is

made, but which may be compensated through

a parallel application of multiple transforma-

tions of type (2).
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Morphisms and Parikh Maatrices

A remarkable improvement seems to be the

use of some morphisms which distinguish the

amiable binary words by their Parikh matrices.

If Σ1 and Σ2 are two finite nonempty sets, a

morphism on Σ1 is an application

φ : Σ∗1 −→ Σ∗2

such that

φ(uv) = φ(u)φ(v)

for all u, v ∈ Σ∗1.

It is uniquely determined by its values on the

alphabet Σ1.

We shall work using the assumption:

(∀x ∈ Σ2, ∃a ∈ Σ1) [|φ(a)|x > 0]
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Theorem 4. If |Σ2| = 1 then

(∀α, β ∈ Σ∗1)[α ∼a β =⇒ φ(α) ∼a φ(β)]

Theorem 5. If |Σ1| = |Σ2| = 2, then

(∀α, β ∈ Σ∗1)[α ∼a β =⇒ φ(α) ∼a φ(β)]

Theorem 6. If |Σ1| = 2, |Σ2| = 3, then

(∀α, β ∈ Σ∗1) [α ∼a β =⇒

Mφ(α) −Mφ(β) =


0 0 0 r
0 0 0 0
0 0 0 0
0 0 0 0

 , r ∈ Z

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Using the values of r ∈ Z from Theorem 6 many amiable

words can be separated.

Example 4. Σ1 = {a, b}, Σ2 = {a, b, c} and the Istrail
morphism defined

φ(a) = abc, φ(b) = ac.

Let us consider all words with Ψ = (19,2).
After applying the Istrail morphism, there are no amiable
words α, β with φ(α) ∼a φ(β).

|α|ab 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|[α]| 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
#φ 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

#max 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For every value of q = |α|ab, the second row of the table
shows the number of amiable words from the set [α]:
the words having the Parikh matrix

M =

 1 19 q
0 1 2
0 0 1


The third row gives the number of classes of amiable
words in which the set X = {φ(w) | w ∈ [α]} is divided,
and the last row of the table represents the greatest
number of components from such a class.
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Example 5. Let us take all the binary words

with Ψ = (10,10).

The separation in amiable classes is

|α|ab 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|[α]| 1 1 2 3 5 7 11 15 22 30 42 54 73 93
#φ 1 1 2 3 5 7 9 15 19 25 31 45 41 67

#max 1 1 1 1 1 1 2 1 2 2 3 2 5 3
|α|ab 14 15 16 17 18 19 20 21 22 23
|[α]| 121 152 193 237 295 356 433 515 615 720
#φ 65 65 79 99 93 107 107 121 125 139

#max 6 6 9 6 10 8 14 17 16 13

|α|ab 24 25 26 27 28 29 30 31 32
|[α]| 847 978 1131 1289 1420 1652 1860 2065 2293
#φ 135 135 147 159 155 163 157 171 171

#max 23 24 25 28 34 25 47 35 42

|α|ab 33 34 35 36 37 38 39 40 41
|[α]| 2517 2761 2994 3246 3481 3729 3956 4192 4397
#φ 183 181 175 187 195 189 195 187 199

#max 49 52 47 70 56 59 60 84 59

|α|ab 42 43 44 45 46 47 48 49 50
|[α]| 4609 4784 4959 5095 5226 5311 5392 5424 5448
#φ 197 207 203 195 205 211 203 207 197

#max 83 70 74 89 92 65 98 78 89
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As an example, for the Parikh matrix

M =

 1 10 20
0 1 10
0 0 1


[α] contains 433 amiable words.

After applying the Istrail morphism, the maxi-

mal set of amiable words is

C = {α ∈ Σ∗ |Mα = M, |φ(α)|abc = 750}

It has 14 elements. Namely:

abbbbbbbabbaaaaaaaba, babbbbbabbabaaaaabaa,

babbbbbbabaaabaabaaa, bbabbabbbbbaaaaaabaa,

bbabbbabbbaabaaabaaa, bbabbbbaabbbaaaabaaa,

bbabbbbababaababaaaa, bbabbbbbaaaabbbaaaaa,

bbbababbbbaaababaaaa, bbbabbababbabaabaaaa,

bbbabbabbaababbaaaaa, bbbbaabbabbaabbaaaaa,

bbbbabaabbabbabaaaaa, bbbbbaaaabbbbbaaaaaa
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Other weaknesses:

Theorem 7. Let φ : {a, b}∗ −→ {x, y, z}∗ be a

morphism. If α, β ∈ {a, b}∗ are amiable, then

φ(αβ) ∼a φ(βα)

Also, the reciprocals of Theorems 5 and 6 are

not true. So, regarding Theorem 5:

Let us consider the morphism φ(a) = xy,

φ(b) = yx, and the words α = ab, β = ba.

We have α 6∼a β but φ(α) ∼a φ(β).

The assertions from the Theorems 5, 6 are

true only for |Σ1| = 2.
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Let be Σ1 = {a1, . . . , as} (s ≥ 2) and

w = c1c2 . . . cn, (ci ∈ Σ1) a nonempty word.

Let

Ψ(w) = (n1, . . . , ns)

be the Parikh vector of w.

We define the alphabet Σ2 = {x1, . . . , xn} and

a morphism φ : Σ∗1 −→ Σ∗2 as follows:

For p = 1, . . . , s:

φ(ap) = xk1
. . . xknp,

where cki = ap, (i = 1, . . . , np)

The word w is called ”control word”.
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Example 6. If Σ1 = {a, b, c} and the control

word w = abccb.

So, n = 5 and Ψ(w) = (1,2,2).

Accordingly with this construction, we define

Σ2 = {x1, x2, x3, x4, x5}

and

φ(a) = x1, φ(b) = x2x5, φ(c) = x3x4.

Theorem 8. Using the construction above, for

a word α ∈ Σ∗1, the Parikh matrix of φ(α) is

Mφ(α) =


1 |α|c1 |α|c1c2 . . . |α|w
0 1 |α|c2 . . . |α|c2...cn...
0 0 0 . . . 1


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A morphism based on a cyclic control word

Let p ≥ 2 be an integer, and w = (a1 . . . as)
p

the control word.

Therefore the morphism

φ : Σ∗1 −→ Σ∗2

is defined by

φ(ai) = xixs+ix2s+i . . . x(p−1)s+i (1 ≤ i ≤ s)

For α ∈ Σ∗1 the Parikh matrix is

Mφ(α) =



1 |α|a1 . . . |α|a1...as |α|a1...asa1 . . . |α|(a1...as)p

0 1 . . . |α|a2...as |α|a2...asa1 . . . |α|a2...as(a1...as)p−1

...
0 0 . . . |α|as |α|asa1 . . . |α|as(a1...as)p−1

0 0 . . . 1 |α|a1 . . . |α|(a1...as)p−1

...
0 0 . . . 0 0 . . . 1


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All informations are provided by α and the first

s rows.

So, we can keep from the Parikh Matrix Mφ(α)
only the first s rows:

Mφ(α) =


1 |α|a1 . . . |α|a1...as |α|a1...asa1 . . . |α|(a1...as)p

0 1 . . . |α|a2...as |α|a2...asa1 . . . |α|a2...as(a1...as)p−1

...
0 0 . . . |α|as |α|asa1 . . . |α|as(a1...as)p−1



Let us denote by row1(α), . . . , rows(α) the rows

of the matrix Mφ(α).

In general the value of p is the highest integer

such that

|α| = |β| > sp
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Theorem 9. The s×(sp+1) matrix Mφ(α) can

be recursively generated as follows:

1. Mφ(ε) =


1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0

...
0 0 . . . 1 . . . 0



2. Maiα can be obtained from Mα as follows:

(a) rowj(aiα)←− rowj(α)

for j ∈ {1,2, . . . , s} \ {i};

(b) rowi(aiα)←− rowi(α) + rowi+1(α)

if 1 ≤ i < s,

rows(asα)←− rows(α)+Shifts(row1(α)).
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Example 7. Let be s = 2, p = 3. Then

Mφ(α) =

(
1 |α|a |α|ab |α|aba |α|abab |α|ababa |α|ababab
0 1 |α|b |α|ba |α|bab |α|baba |α|babab

)

If we take the binary amiable words

abbabaab and baababba

we have

Mφ(abbabaab) =

(
1 4 8 10 12 4 4
0 1 4 8 10 4 4

)
and

Mφ(baababba) =

(
1 4 8 10 4 4 0
0 1 4 8 10 12 4

)
Therefore these words are separated by 3 ele-

ments (from 14): #abab, #baba, #ababab.
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Unfortunately, this cyclic morphism does not

solve entirely the separation of any amiable

words.

Example 8. The words α = abccb and β = acbbc

have the same Parikh matrix:

M =


1 1 2 2
0 1 2 2
0 0 1 2
0 0 0 1



Their images φ(α) and φ(β) constructed with

p = 2 (but any value p > 2 gives the same

result) have also the same Parikh matrix:

Mφ(α) =



1 1 2 2 0 0 0
0 1 2 2 0 0 0
0 0 1 2 0 0 0
0 0 0 1 1 2 2
0 0 0 0 1 2 2
0 0 0 0 0 1 2
0 0 0 0 0 0 1


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Theorem 10. Let Σ1 = {a1, . . . , as} be an or-

dered alphabet, and α, β ∈ Σ∗1 be two amiable

words.

Then there is an ordered alphabet Σ2 and a

morphism φ : Σ∗1 −→ Σ∗2 such that

φ(α) 6∼a φ(β)

The construction is based on the control word

w = α.

Using Theorem 8, the last entry of the first

row in a Parikh matrix for an arbitrary word

γ ∈ Σ∗1 is |γ|α.

Now, because |α| = |β| = |w| we have |α|α = 1

and |β|α = 1 if and only if α = β.
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Example 9. The words α = acbbc and β = abccb

from Example 8 can be separated using the

construction from Theorem 10.

For the control word w = α = acbbc:

Mφ(acbbc) =



1 1 2 2 1 1
0 1 2 2 1 1
0 0 1 2 1 1
0 0 0 1 2 2
0 0 0 0 1 2
0 0 0 0 0 0



Mφ(abccb) =



1 1 2 2 0 0
0 1 2 2 0 0
0 0 1 2 1 0
0 0 0 1 2 2
0 0 0 0 1 2
0 0 0 0 0 0



31



Parikh matrix mappings of languages

Let us consider an alphabet Σ and a language

L ⊆ Σ∗, such that

∀a ∈ Σ, ∃w ∈ L, |w|a 6= 0

Theorem 11. Let Σ = {a, b} be an alphabet

and M ∈ M3 a fixed Parikh matrix mapping,

where M = (mij)1≤i,j≤3. Then the language

L = {α | α ∈ Σ∗, |α|ab = m13}

is regular.

Theorem 12. Let Σ = {a1, a2, . . . , as} an or-

dered alphabet and M ∈ Ms+1 a fixed Parikh

matrix mapping. Then the following language

is regular:

L = {α | α ∈ Σ∗,Mα and M

are identical on the third diagonal}
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Theorem 13. Let L ∈ L1 over the alphabet

Σ = {a1, a2, . . . , as} and M ∈ Ms+1 a Parikh

matrix mapping. It is decidable whether exists

w ∈ L having Mw = M .

1. From M we extract the Parikh vector

Ψ = (x1, x2, . . . , xs)

2. Let n =
s∑

i=1

xi, V0 = {S}, i := 1.

3. Vi = Vi−1 ∪ {α | ∃β ∈ Vi−1, β
G

=⇒ α,

|α| ≤ n, |α|ai ≤ xi, 1 ≤ i ≤ s}.
4. If Vi 6= Vi−1 then i := i+ 1 and goto 3.

5. W = Vi ∩Σ∗.
6. If W = ∅ then NO, Stop.

7. Let x ∈W . If Mx = M then YES, Stop.

8. W := W \ {x} and goto 6.

33



Amiable extensions of Chomsky languages

Let L ⊆ Σ∗. We will extend this language by

adding all the words that are amiable with the

elements of L. Formally,

[L] = {w | ∃α ∈ L, Mα = Mw}.

or

[L] =
⋃
α∈L

[α]

[L] is the amiable extension of L.
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Properties:

1. [[L]] = [L];

2. [L1 ∪ L2] = [L1] ∪ [L2];

3. [L1][L2] ⊆ [L1L2];

4. L1 ⊆ L2 =⇒ [L1] ⊆ [L2],

5. [L]∗ ⊆ [L∗].

6. [L1 ∩ L2] ⊆ [L1] ∩ [L2].

7. L ⊂ [L]⇐⇒ [L]∩ [L] 6= ∅, where L = Σ∗ \L.

8. L = [L] ⇐⇒ L = [L].
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Proposition 1. LΣ = {[L]|L ⊆ Σ∗} forms a

Boolean algebra (with the
⋃

and
⋂

operators).

Proposition 2. The set of languages charac-

terized by the same set of Parikh matrices

(given by a language L) is a join-semilattice.
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Theorem 14. Let Σ = {a, b} be an alphabet

and L ⊆ Σ∗ a language.

1. If L ∈ Li, with 1 ≤ i ≤ 3, then [L] ∈ L1.

2. L0 is closed under the [ ] extension.
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Definition 4. Let n be a non-negative integer,

and Σ a fixed alphabet.

The following class of languages is defined

APLn(Σ) (Amiable Parikh Languages of n or-

der over the alphabet Σ) in the following way:

A language L ∈ APLn(Σ) if

1. All the words of L ⊆ Σ∗ are amiable (they

have the same Parikh matrix M);

2. ∃w1, w2 ∈ L such that w1
(2.n)←→ w2 where the

transformation (2.n) is irreducible.
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• APL0(Σ) contains languages whose words

are amiable using only transformations of

type (1).

For instance, if Σ = {a, b, c}, the languages

L = [α], (α ∈ {a, c}∗) are in APL0(Σ).

• If Σ is a binary alphabet, then all the lan-

guages L = [α] (α ∈ Σ∗) are in APL1(Σ).
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Theorem 15. If Σ is an alphabet with |Σ| > 2,

then the hierarchy APLn(Σ) is infinite.

Consider |Σ| = 3.

Let be the alphabet Σ = {a < b < c} and n a

fixed arbitrary non-negative integer.

w = (abcba)n−1bacn−1ab

w′ = (bacab)n−1abcn−1ba

Statements:

1. Mw = Mw′ =

 1 2n 2n2 (n− 1)(2n2 − 3n+ 2)
0 1 2n (n− 1)(3n− 2)
0 0 1 2n− 2
0 0 0 1



2. The transformation w
(2.n)←→ w′ is irreducible

of order n.
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The language

L = {α | α ∈ Σ∗, Mα = Mw} ∈ APLn(Σ)

(w,w′ ∈ L and between them there exists a

(2.n) irreducible transformation).

If the non-binary alphabet Σ is fixed, we can

use the notation APLn instead of APLn(Σ).
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Proposition 3. Let M be a Parikh matrix and

L ∈ APL1 a language defined by M .

Then there exists an unique integer n, and a

sequence of languages L1, . . . , Ln such that

1. L = L1 ⊂ L2 ⊂ . . . ⊂ Ln,
Li ∈ APLi, (1 ≤ i ≤ n).

2. ∀w ∈ Σ∗ [w ∈ Ln ⇐⇒ Mw = M ].

In other words, Ln = [Ln].
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The following statements are obvious:

• L1, L2 ∈ APLn =⇒ L1 ∪ L2 ∈ APLn.

• L1, L2 ∈ APLn, L1 ∩ L2 6= ∅ =⇒ L1 = L2.

Proposition 4. If L1, L2 ∈ APLn, L1 ∩ L2 = ∅
and both languages are defined by the same

Parikh matrix mapping M , then

1. Li ⊂ [Li], i = 1,2;

2. ∃L3 ∈ APLn+1 defined by the matrix M ,

where L1 ∪ L2 ⊆ L3.
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